数据科学与大数据毕业后做什么(数据科学与大数据的就业方向)
数据科学与大数据技术就业方向
数据科学与大数据技术就业方向如下:
1、大数据系统架构师:大数据平台搭建、系统设计、基础设施。
2、大数据系统分析师:面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
3、hadoop开发工程师:解决大数据存储问题。
4、数据分析师。
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人 员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
数据科学与大数据技术专业就业前景分析:
随着移动互联网和智能终端的普及,信息技术与经济社会的交汇融合,引发了数据迅猛增长。新摩尔 定律认为,人类有史以来的数据总量,每过18个月就会翻一番。而海量的数据蕴含着巨大生产力和商 机。
2011年至2014年四年间,我国大数据处于起步阶段,每年均增长在20%以上。2015年,大数据市场 规模已达到98.9亿元。2016年增速达到45%,超过160亿元。预计2020年,我国大数据市场规模将超过 8000亿元,有望成世界第一数据资源大国。但数据开放度低、技术薄弱、人才缺失、行业应用不深入等 都是产业发展中亟待解决的问题。
根据领英发布《2016年中国最热职位人才报告》显示,有六类热门职位的人才当前都处于供不应求 状态,稀缺程度各有不同,其中,数据分析人才的供给指数最低,仅为0.05,属于高度稀缺。
数据科学与大数据技术专业就业方向
数据科学与大数据技术专业就业方向:毕业生能在政府机构、企业、公司等从事大数据管理、研究、应用开发等方面的工作。
就业方向
分析类岗位
分析类工程师。使用统计模型、数据挖掘、机器学习及其他方法,进行数据清洗、数据分析、构建行业数据分析模型,为客户提供有价值的信息,满足客户需求。
算法工程师。大数据方向,和专业工程师一起从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题;人工智能方向,根据人工智能产品需求完成技术方案设计及算法设计和核心模块开发,组织解决项目开发过程中的重大技术问题。
研发类岗位
架构工程师。负责Hadoop集群架构设计开发、搭建、管理、运维、调优,从数据采集到数据加工,从数据清洗到数据抽取,从数据统计到数据分析,实现大数据全产业线上的应用分析设计。
开发工程师。基于hadoop、spark等构建数据分析平台,进行设计、开发分布式计算业务,负责机器学习、深度学习领域的开发工作。
运维工程师。负责大数据基础平台的运维,保障平台的稳定可用,参与设计大数据自动化运维、监控、故障处理工具。
管理类岗位
产品经理。负责大数据平台产品的设计工作,主导数据产品的功能规划、体验设计,与研发、数据分析、算法团队紧密合作,挖掘数据价值,形成数据产品,包括部分数据可视化的产品设计等。
运营经理。根据业务特点,结合业务发展需求,设立数据监控模型,搭建数据分析架构,理解业务方向和战略,为业务战略决策、业务方向提供决策支持,竞争分析及建议。
大数据科学与大数据技术就业方向
数据科学与大数据技术专业就业前景主要是在IT类企业从事大数据技术、大数据研究、数据管理、数据挖掘、算法工程、应用开发等工作。培养具有将领域知识与计算机技术和大数据技术融合创新的能力, 能够从事大数据研究和开发应用的高层次人才。
近年来越来越多的人开始从事大数据方向的工作,大数据将会是未来最有发展前景的行业。数据科学与大数据技术专业就业前景广阔,毕业生能够在计算机和互联网领域以及大数据相关产业从事数据科学研究、大数据相关:工程应用开发、技术管理与咨询等工作。
数据科学与大数据技术专业就业方向:
1、大数据系统架构师:大数据平台搭建、系统设计、基础设施。
2、大数据系统分析师。
3、hadoop开发工程师:解决大数据存储问题。
4、数据分析师。