python神经网络编程(Python神经网络编程电子版)
如何通过Python进行深度学习?
作者 | Vihar Kurama
编译 | 荷叶
来源 | 云栖社区
摘要:深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。本文就用一个小例子无死角的介绍一下深度学习!
人脑模拟
深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。此观点引出了“神经网络”这一术语。人脑中包含数十亿个神经元,它们之间有数万个连接。很多情况下,深度学习算法和人脑相似,因为人脑和深度学习模型都拥有大量的编译单元(神经元),这些编译单元(神经元)在独立的情况下都不太智能,但是当他们相互作用时就会变得智能。
我认为人们需要了解到深度学习正在使得很多幕后的事物变得更好。深度学习已经应用于谷歌搜索和图像搜索,你可以通过它搜索像“拥抱”这样的词语以获得相应的图像。-杰弗里·辛顿
神经元
神经网络的基本构建模块是人工神经元,它模仿了人类大脑的神经元。这些神经元是简单、强大的计算单元,拥有加权输入信号并且使用激活函数产生输出信号。这些神经元分布在神经网络的几个层中。
inputs 输入 outputs 输出 weights 权值 activation 激活
人工神经网络的工作原理是什么?
深度学习由人工神经网络构成,该网络模拟了人脑中类似的网络。当数据穿过这个人工网络时,每一层都会处理这个数据的一方面,过滤掉异常值,辨认出熟悉的实体,并产生最终输出。
输入层:该层由神经元组成,这些神经元只接收输入信息并将它传递到其他层。输入层的图层数应等于数据集里的属性或要素的数量。输出层:输出层具有预测性,其主要取决于你所构建的模型类型。隐含层:隐含层处于输入层和输出层之间,以模型类型为基础。隐含层包含大量的神经元。处于隐含层的神经元会先转化输入信息,再将它们传递出去。随着网络受训练,权重得到更新,从而使其更具前瞻性。
神经元的权重
权重是指两个神经元之间的连接的强度或幅度。你如果熟悉线性回归的话,可以将输入的权重类比为我们在回归方程中用的系数。权重通常被初始化为小的随机数值,比如数值0-1。
前馈深度网络
前馈监督神经网络曾是第一个也是最成功的学习算法。该网络也可被称为深度网络、多层感知机(MLP)或简单神经网络,并且阐明了具有单一隐含层的原始架构。每个神经元通过某个权重和另一个神经元相关联。
该网络处理向前处理输入信息,激活神经元,最终产生输出值。在此网络中,这称为前向传递。
inputlayer 输入层 hidden layer 输出层 output layer 输出层
激活函数
激活函数就是求和加权的输入到神经元的输出的映射。之所以称之为激活函数或传递函数是因为它控制着激活神经元的初始值和输出信号的强度。
用数学表示为:
我们有许多激活函数,其中使用最多的是整流线性单元函数、双曲正切函数和solfPlus函数。
激活函数的速查表如下:
反向传播
在网络中,我们将预测值与预期输出值相比较,并使用函数计算其误差。然后,这个误差会传回这个网络,每次传回一个层,权重也会根绝其导致的误差值进行更新。这个聪明的数学法是反向传播算法。这个步骤会在训练数据的所有样本中反复进行,整个训练数据集的网络更新一轮称为一个时期。一个网络可受训练数十、数百或数千个时期。
prediction error 预测误差
代价函数和梯度下降
代价函数度量了神经网络对给定的训练输入和预期输出“有多好”。该函数可能取决于权重、偏差等属性。
代价函数是单值的,并不是一个向量,因为它从整体上评估神经网络的性能。在运用梯度下降最优算法时,权重在每个时期后都会得到增量式地更新。
兼容代价函数
用数学表述为差值平方和:
target 目标值 output 输出值
权重更新的大小和方向是由在代价梯度的反向上采取步骤计算出的。
其中η 是学习率
其中Δw是包含每个权重系数w的权重更新的向量,其计算方式如下:
target 目标值 output 输出值
图表中会考虑到单系数的代价函数
initial weight 初始权重 gradient 梯度 global cost minimum 代价极小值
在导数达到最小误差值之前,我们会一直计算梯度下降,并且每个步骤都会取决于斜率(梯度)的陡度。
多层感知器(前向传播)
这类网络由多层神经元组成,通常这些神经元以前馈方式(向前传播)相互连接。一层中的每个神经元可以直接连接后续层的神经元。在许多应用中,这些网络的单元会采用S型函数或整流线性单元(整流线性激活)函数作为激活函数。
现在想想看要找出处理次数这个问题,给定的账户和家庭成员作为输入
要解决这个问题,首先,我们需要先创建一个前向传播神经网络。我们的输入层将是家庭成员和账户的数量,隐含层数为1, 输出层将是处理次数。
将图中输入层到输出层的给定权重作为输入:家庭成员数为2、账户数为3。
现在将通过以下步骤使用前向传播来计算隐含层(i,j)和输出层(k)的值。
步骤:
1, 乘法-添加方法。
2, 点积(输入*权重)。
3,一次一个数据点的前向传播。
4, 输出是该数据点的预测。
i的值将从相连接的神经元所对应的输入值和权重中计算出来。
i = (2 * 1) + (3* 1) → i = 5
同样地,j = (2 * -1) + (3 * 1) → j =1
K = (5 * 2) + (1* -1) → k = 9
Python中的多层感知器问题的解决
激活函数的使用
为了使神经网络达到其最大预测能力,我们需要在隐含层应用一个激活函数,以捕捉非线性。我们通过将值代入方程式的方式来在输入层和输出层应用激活函数。
这里我们使用整流线性激活(ReLU):
用Keras开发第一个神经网络
关于Keras:
Keras是一个高级神经网络的应用程序编程接口,由Python编写,能够搭建在TensorFlow,CNTK,或Theano上。
使用PIP在设备上安装Keras,并且运行下列指令。
在keras执行深度学习程序的步骤
1,加载数据;
2,创建模型;
3,编译模型;
4,拟合模型;
5,评估模型。
开发Keras模型
全连接层用Dense表示。我们可以指定层中神经元的数量作为第一参数,指定初始化方法为第二参数,即初始化参数,并且用激活参数确定激活函数。既然模型已经创建,我们就可以编译它。我们在底层库(也称为后端)用高效数字库编译模型,底层库可以用Theano或TensorFlow。目前为止,我们已经完成了创建模型和编译模型,为进行有效计算做好了准备。现在可以在PIMA数据上运行模型了。我们可以在模型上调用拟合函数f(),以在数据上训练或拟合模型。
我们先从KERAS中的程序开始,
神经网络一直训练到150个时期,并返回精确值。
python神经网络学谁的课
python神经网络学吴恩达的Python机器学习课程(神经网络篇)。深度学习算法中,数据量很大,在程序中应该尽量减少使用loop循环语句,而可以使用向量运算来提高程序运行速度。
使用python在GPU上构建和训练卷积神经网络
我将对代码进行补充演练,以构建在数据集上训练的任何类型的图像分类器。在这个例子中,我将使用花卉数据集,其中包括102种不同类型的花。需要数据集和代码都可以私信我。
Pytorch是机器学习和Python上的免费软件包,非常易于使用。语法模拟numpy,因此,如果你在python中有一些科学计算经验,那么会相当有用的。只需几行代码,就可以下载预先训练的数据集,使用定义的变换对图像进行标准化,然后运行训练。
创建和扩充数据集
为了增加数据集,我使用' google_images_download'API 从互联网上下载了相关图像。显然,您可以使用此API不仅可以扩充现有数据集,还可以从头开始创建自己的数据集。
确保从图像中挑选出异常值(损坏的文件或偶然出现的无关图像)。
图像标准化
为了使图像具有相同的大小和像素变化,可以使用pytorch的transfors模块:
转移学习
从头开始训练的模型可能不是最明智的选择,因为有许多网络可用于各种数据集。简单地说,像edge-和其他简单形状检测器等低级特征对于不同的模型是相似的,即使clasificators是针对不同目的进行训练的。在本项目中,我使用了一个预训练网络Resnet152,只有最后一个完全连接的层重新用于新任务,即使这样也会产生相当好的效果。
在这里,我将除最后一层之外的所有层都设置为具有固定权重(requires_grad = False),因此只有最后层中的参数将通过梯度下降进行更新。
训练模型
下面介绍一下进行训练的函数:
如何获得GPU?
当然,对CPU的训练太慢了。根据我自己的经验,在GPU仅需要一个小时就可以完成12次训练周期,但是在CPU上相同数量的训练周期可能需要花费大约15个小时。
如果您没有本地可用的GPU,则可以考虑使用云GPU。为了加速CNN的训练,我使用了floydhub()上提供的云GPU 。
这项服务非常指的使用:总有很好的文档和大量的提示,所以你会很清楚的知道下一步需要如何去做。在floydhub上对于使用GPU的收费也是可以接受的。
首先,需要将数据集上传到服务器
然后,需要创建项目。需要在计算机上安装floydhub客户端,将数据集上载到其网站并在终端中运行以下命令:
其中'username'是您的登录名,'i'是数据集所在的文件夹。
这样子在训练网络时就会很轻松了
结果和改进想法
得到的模型在数据集上训练了1.5小时,并在验证数据集上达到了95%的准确度。
清华名师用30小时讲解Python教程,整整400多集,拿走不谢
本套 Python 课程 400 集,从零基础开始,全面讲解 Python 基础,直达可以手写神经网络的境界。
我们创造性的增加了:手写数据结构和算法、手写神经网络项目。让零基础学员在学习Python 时就开始接触高深的底层知识、神经网络底层实现的知识。
内容共分 26 章,讲解了 Python 基础的方方面面,可以作为 Python 学习者的“宝典”。同时,穿插了 3 个大型实战项目:
1. 坦克大战 游戏 。
采用 游戏 开发的方式,寓教于乐,快乐中掌握 Python 基础。
2. 手写算法和数据结构。
算法和数据结构是很多大公司面试的不二选择,我们这里讲解内容的同时,手把手 带你实现一个个底层算法,将内功练扎实。
3. 手写神经网络。
Python 是人工智能的第一语言。我们创造性的在基础课程中就加入了如何编写一个自己的神经网络,为踏入神经网络的大门打下“坚实基础”。
本套视频一共 400 集,本套视频共分 3 季:
第一季 【基础篇】Python 基础 (115 集)
第二季 【提高篇】Python 深入和扩展(100 集)
第三季 【扩展篇】网络编程、多线程、扩展库(85 集)
第四季 【高手篇】算法、Python 源码、函数式编程、手工实现神经网络(100 集)
目录:
一 Python基础
二 数据库编程
三 Liunx系统
四 网页编程
五 VUE框架
六 Flask 框架
获取方式:
私信“1”获取
私信方法:点击头像 点击回复“1”即可
python有什么用?能做哪些有趣的事情?
现在越来越多的人开始学习python语言,好像不会点编程都不好意思说是混互联网的;那python到底是干嘛的呢?有哪些具体用途呢?下面我就为你简单罗列一下:
1.网站开发:
网站开发即Web开发,Python是一种解释型的脚本语言,无需编译,开发效率高,语法相对简单,非常适合做web开发及入门,常用的web开发框架有Django、Flask、Tornado 等。
2.爬虫开发:
爬虫可以说是python发展起来的基础,全球最大搜索引擎google最初就是用python爬取网站,丰富资源的。爬虫目前用得比较多的场景有比价网站、信息收集、数据统计等。
3.数据分析:
python在数据处理方面,有大量库供你使用, 数据分析中涉及到的分布式计算引擎hadoop、spark、flink等、数据可视化;另外对数据库mysql、Oracle、sqlService、clickhouse等,Python都有成熟的模块可以选择。
4.人工智能:
因为Python有很多库很方便做人工智能,比如NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库;Pandas可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征,scipy做数值计算的,sklearn、XGBoost、CatBoost做机器学习的,ChainerCV、pybrain、Hebel做神经网络的,matplotlib将数据可视化的。
在人工智能大范畴领域内的 数据挖掘、机器学习、神经网络、深度学习 等方面都是主流的编程语言,得到广泛的支持和应用。
5.图形处理:
图像处理中的基本操作(如裁剪、翻转、旋转等)、图像分割、分类和特征提取,图像恢复和图像识别等,有PIL、Pillow、Tkinter、scikit-image、scipy、OpenCV等图形库支持,能方便进行图形处理。
6.神经科学与心理学:
Python具有获取和分析数据以及通过建模和仿真测试假设的能力,使其非常适合计算神经科学和实验心理学研究。使用Pygame和Psychopy生成和控制复杂视觉刺激。开源软件包PsychoPy在全球范围内的实验室中用于认知神经科学,实验心理学和心理物理学。