python爬虫代码大全(python新手代码)
如何在scrapy框架下,用python实现爬虫自动跳转页面来抓去网页内容??
Scrapy是一个用Python写的Crawler Framework,简单轻巧,并且非常方便。Scrapy使用Twisted这个异步网络库来处理网络通信,架构清晰,并且包含了各种中间件接口,可以灵活地完成各种需求。Scrapy整体架构如下图所示:
根据架构图介绍一下Scrapy中的各大组件及其功能:
Scrapy引擎(Engine):负责控制数据流在系统的所有组建中流动,并在相应动作发生触发事件。
调度器(Scheduler):从引擎接收Request并将它们入队,以便之后引擎请求request时提供给引擎。
下载器(Downloader):负责获取页面数据并提供给引擎,而后提供给Spider。
Spider:Scrapy用户编写用于分析Response并提取Item(即获取到的Item)或额外跟进的URL的类。每个Spider负责处理一个特定(或一些网站)。
Item Pipeline:负责处理被Spider提取出来的Item。典型的处理有清理验证及持久化(例如存储到数据库中,这部分后面会介绍存储到MySQL中,其他的数据库类似)。
下载器中间件(Downloader middlewares):是在引擎即下载器之间的特定钩子(special hook),处理Downloader传递给引擎的Response。其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy功能(后面会介绍配置一些中间并激活,用以应对反爬虫)。
Spider中间件(Spider middlewares):是在引擎及Spider之间的特定钩子(special hook),处理Spider的输入(response)和输出(Items即Requests)。其提供了一个简便的机制,通过插入自定义的代码来扩展Scrapy功能。
python 爬虫(学了3天写出的代码)
import requests import parsel import threading,os import queue
class Thread(threading.Thread): def init (self,queue,path): threading.Thread. init (self) self.queue = queue self.path = path
def download_novel(url, path): res = get_response(url) selctor = parsel.Selector(res) title = selctor.css('.bookname h1::text').get() print(title) content = ' '.join(selctor.css('#content::text').getall()) # 使用join方法改变内容; with open( path + title + ".txt","w",encoding='utf-8') as f: f.write(content) print(title,'保存成功!') f.close()
def get_response(url): # 获得网站源码; response = requests.get(url) response.encoding = 'utf-8' return response.text
if name == ' main ': # 函数入口 url = str(input('请输入你要下载小说的url:')) response = get_response(url) sel = parsel.Selector(response) novelname = sel.css('#info h1::text').get() urllist = sel.css('.box_con p dl dd a::attr(href)').getall() queue = queue.Queue() path = './{}/'.format(novelname)
Python爬虫:想听榜单歌曲?只需要14行代码即可搞定
虽然说XPath比正则表达式用起来方便,但是没有最方便,只有更方便。我们的BeautifulSoup库就能做到更方便的爬取想要的东西。
使用之前,还是老规矩,先安装BeautifulSoup库,指令如下:
其中文开发文档:
BeautifulSoup库是一个强大的Python语言的XML和HTML解析库。它提供了一些简单的函数来处理导航、搜索、修改分析树等功能。
BeautifulSoup库还能自动将输入的文档转换为Unicode编码,输出文档转换为UTF-8编码。
所以,在使用BeautifulSoup库的过程中,不需要开发中考虑编码的问题,除非你解析的文档,本身就没有指定编码方式,这才需要开发中进行编码处理。
下面,我们来详细介绍BeautifulSoup库的使用规则。
下面,我们来详细介绍BeautifulSoup库的重点知识。
首先,BeautifulSoup库中一个重要的概念就是选择解释器。因为其底层依赖的全是这些解释器,我们有必要认识一下。博主专门列出了一个表格:
从上面表格观察,我们一般爬虫使用lxml HTML解析器即可,不仅速度快,而且兼容性强大,只是需要安装C语言库这一个缺点(不能叫缺点,应该叫麻烦)。
要使用BeautifulSoup库,需要和其他库一样进行导入,但你虽然安装的是beautifulsoup4,但导入的名称并不是beautifulsoup4,而是bs4。用法如下:
运行之后,输出文本如下:
基础的用法很简单,这里不在赘述。从现在开始,我们来详细学习BeautifulSoup库的所有重要知识点,第一个就是节点选择器。
所谓节点选择器,就是直接通过节点的名称选择节点,然后再用string属性就可以得到节点内的文本,这种方式获取最快。
比如,基础用法中,我们使用h1直接获取了h1节点,然后通过h1.string即可得到它的文本。但这种用法有一个明显的缺点,就是层次复杂不适合。
所以,我们在使用节点选择器之前,需要将文档缩小。比如一个文档很多很大,但我们获取的内容只在id为blog的p中,那么我们先获取这个p,再在p内部使用节点选择器就非常合适了。
HTML示例代码:
下面的一些示例,我们还是使用这个HTML代码进行节点选择器的讲解。
这里,我们先来教会大家如何获取节点的名称属性以及内容,示例如下:
运行之后,效果如下:
一般来说一个节点的子节点有可能很多,通过上面的方式获取,只能得到第一个。如果要获取一个标签的所有子节点,这里有2种方式。先来看代码:
运行之后,效果如下:
如上面代码所示,我们有2种方式获取所有子节点,一种是通过contents属性,一种是通过children属性,2者遍历的结果都是一样的。
既然能获取直接子节点,那么获取所有子孙节点也是肯定可以的。BeautifulSoup库给我们提供了descendants属性获取子孙节点,示例如下:
运行之后,效果如下:
同样的,在实际的爬虫程序中,我们有时候也需要通过逆向查找父节点,或者查找兄弟节点。
BeautifulSoup库,给我们提供了parent属性获取父节点,同时提供了next_sibling属性获取当前节点的下一个兄弟节点,previous_sibling属性获取上一个兄弟节点。
示例代码如下:
运行之后,效果如下:
对于节点选择器,博主已经介绍了相对于文本内容较少的完全可以这么做。但实际的爬虫爬的网址都是大量的数据,开始使用节点选择器就不合适了。所以,我们要考虑通过方法选择器进行先一步的处理。
find_all()方法主要用于根据节点的名称、属性、文本内容等选择所有符合要求的节点。其完整的定义如下所示:
【实战】还是测试上面的HTML,我们获取name=a,attr={"class":"aaa"},并且文本等于text="Python板块"板块的节点。
示例代码如下所示:
运行之后,效果如下所示:
find()与find_all()仅差一个all,但结果却有2点不同:
1.find()只查找符合条件的第一个节点,而find_all()是查找符合条件的所有节点2.find()方法返回的是bs4.element.Tag对象,而find_all()返回的是bs4.element.ResultSet对象
下面,我们来查找上面HTML中的a标签,看看返回结果有何不同,示例如下:
运行之后,效果如下:
首先,我们来了解一下CSS选择器的规则:
1..classname:选取样式名为classname的节点,也就是class属性值是classname的节点2.#idname:选取id属性为idname的节点3.nodename:选取节点名为nodename的节点
一般来说,在BeautifulSoup库中,我们使用函数select()进行CSS选择器的操作。示例如下:
这里,我们选择class等于li1的节点。运行之后,效果如下:
因为,我们需要实现嵌套CSS选择器的用法,但上面的HTML不合适。这里,我们略作修改,仅仅更改