Python怎么计算方程(python计算方程的两个根)
python求一元二次方程的解
python求一元二次方程的解如下:
首先要了解一元二次方差的求法,然后逐步编写程序。方程为:ax^2加bx加c等于0我们先编写一个最简单的版本,成功的计算除了数值。实际上,一个非常简单的一元二次方程求解,如果把方程的系数进行变化,假设a等于1,b等于3,c等于5。
就会发现程序报错了,这就牵扯到了math包的局限性,如果是math包,则不能处理复述,本题的方程求解出的是复数,所以需要用到cmath。同样输入a等于1,b等于3,c等于5。这时候就没有报错得出了,想要的结果。但如果使用cmath时,输入一个有实数解的方程后,就会得到带有j的答案。
python简介:
1、Python由荷兰数学和计算机科学研究学会的Guido van Rossum于1990年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。
2、Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言。
3、随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。
4、Python也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。
如何用python计算三元方程
(1) variable = a if exper else b
(2)variable = (exper and [b] or [c])[0]
(2) variable = exper and b or c
上面三种用法都可以达到目的,类似C语言中 variable = exper ? b : c;即:如果exper表达式的值为true则variable = b,否则,variable = c
例如:
a,b=1,2
max = (a if a b else b)
max = (a b and [a] or [b])[0] #list
max = (a b and a or b)
现在大部分高级语言都支持“?”这个三元运算符(ternary operator),它对应的表达式如下:condition ? value if true : value if false。很奇怪的是,这么常用的运算符python居然不支持!诚然,我们可以通过if-else语句表达,但是本来一行代码可以完成的非要多行,明显不够简洁。没关系,在python里其实还是有对应的表达方式的。
利用Python语言计算方程的根
import math
def erfenfa(function, a, b): #定义函数,利用二分法求方程的根,function为具体方程,a,b为根的取值范围
?start = a
?end = b
?if function(a) == 0:?
??return a
?elif function(b) == 0:
??return b
?elif function(a) * function(b) 0:?
??print("couldn't find root in [a,b]")
??return
?else:
??mid = (start + end) / 2
??while abs(start - mid) 0.0000001:?
???if function(mid) == 0:
????return mid
???elif function(mid) * function(start) 0:
????end = mid
???else:
????start = mid
???mid = (start + end) / 2
??return mid
def f(x):#定义构造方程式函数
?return math.pow(x, 5) -15*math.pow(x, 4) +85*math.pow(x, 3)-225*pow(x,2)+274*x - 121
print(round(erfenfa(f, 1.5, 2.4),6))
如何使用python计算常微分方程?
常用形式
odeint(func, y0, t,args,Dfun)
一般这种形式就够用了。
下面是官方的例子,求解的是
D(D(y1))-t*y1=0
为了方便,采取D=d/dt。如果我们令初值
y1(0) = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
D(y1)(0) = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
这个微分方程的解y1=airy(t)。
令D(y1)=y0,就有这个常微分方程组。
D(y0)=t*y1
D(y1)=y0
Python求解该微分方程。
from scipy.integrate import odeint
from scipy.special import gamma, airy
y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
y0 = [y0_0, y1_0]
def func(y, t):
... return [t*y[1],y[0]]
def gradient(y,t):
... return [[0,t],[1,0]]
x = arange(0,4.0, 0.01)
t = x
ychk = airy(x)[0]
y = odeint(func, y0, t)
y2 = odeint(func, y0, t, Dfun=gradient)
print ychk[:36:6]
[ 0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]
print y[:36:6,1]
[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]
print y2[:36:6,1]
[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]
得到的解与精确值相比,误差相当小。
=======================================================================================================
args是额外的参数。
用法请参看下面的例子。这是一个洛仑兹曲线的求解,并且用matplotlib绘出空间曲线图。(来自《python科学计算》)
from scipy.integrate import odeint
import numpy as np
def lorenz(w, t, p, r, b):
# 给出位置矢量w,和三个参数p, r, b 计算出
# dx/dt, dy/dt, dz/dt 的值
x, y, z = w
# 直接与lorenz 的计算公式对应
return np.array([p*(y-x), x*(r-z)-y, x*y-b*z])
t = np.arange(0, 30, 0.01) # 创建时间点
# 调用ode 对lorenz 进行求解, 用两个不同的初始值
track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))
track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))
# 绘图
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(track1[:,0], track1[:,1], track1[:,2])
ax.plot(track2[:,0], track2[:,1], track2[:,2])
plt.show()
===========================================================================
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)
计算常微分方程(组)
使用 FORTRAN库odepack中的lsoda解常微分方程。这个函数一般求解初值问题。
参数:
func : callable(y, t0, ...) 计算y在t0 处的导数。
y0 : 数组 y的初值条件(可以是矢量)
t : 数组 为求出y,这是一个时间点的序列。初值点应该是这个序列的第一个元素。
args : 元组 func的额外参数
Dfun : callable(y, t0, ...) 函数的梯度(Jacobian)。即雅可比多项式。
col_deriv : boolean. True,Dfun定义列向导数(更快),否则Dfun会定义横排导数
full_output : boolean 可选输出,如果为True 则返回一个字典,作为第二输出。
printmessg : boolean 是否打印convergence 消息。
返回: y : array, shape (len(y0), len(t))
数组,包含y值,每一个对应于时间序列中的t。初值y0 在第一排。
infodict : 字典,只有full_output == True 时,才会返回。
字典包含额为的输出信息。
键值:
‘hu’ vector of step sizes successfully used for each time step.
‘tcur’ vector with the value of t reached for each time step. (will always be at least as large as the input times).
‘tolsf’ vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected.
‘tsw’ value of t at the time of the last method switch (given for each time step)
‘nst’ cumulative number of time steps
‘nfe’ cumulative number of function evaluations for each time step
‘nje’ cumulative number of jacobian evaluations for each time step
‘nqu’ a vector of method orders for each successful step.
‘imxer’index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise.
‘lenrw’ the length of the double work array required.
‘leniw’ the length of integer work array required.
‘mused’a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff)
其他参数,官方网站和文档都没有明确说明。相关的资料,暂时也找不到。
python怎么求方程的根?如exp(x)=10,求x
以下仅作参考,若大家有更好的方法,欢迎交流
1. 若手动挑选方程的解,可以这样写
fx=inline('5*x.^2.*sin(x)-exp(-x)');
x0=fsolve(fx,0:10)
y=subs(fx,'x',x0)
从x0的结果中可以知道,方程在[0,10]有四个解
2. 可以自动只显示方程在[0,10]内的所有解
fx=inline('5*x.^2.*sin(x)-exp(-x)');
x0=fsolve(fx,0:10);
j=2;a(1)=x0(1);
for i=1:9
if (abs(x0(i+1)-x0(i)10^(-5)))
a(j)=x0(i+1);
j=j+1;