Python论文摘要(python论文摘要怎么写)

http://www.itjxue.com  2023-04-04 04:34  来源:未知  点击次数: 

一篇文章带你深度解析Python线程和进程

使用Python中的线程模块,能够同时运行程序的不同部分,并简化设计。如果你已经入门Python,并且想用线程来提升程序运行速度的话,希望这篇教程会对你有所帮助。

线程与进程

什么是进程

进程是系统进行资源分配和调度的一个独立单位 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信。由于进程比较重量,占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大,但相对比较稳定安全。

什么是线程

CPU调度和分派的基本单位 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。线程间通信主要通过共享内存,上下文切换很快,资源开销较少,但相比进程不够稳定容易丢失数据。

进程与线程的关系图

线程与进程的区别:

进程

现实生活中,有很多的场景中的事情是同时进行的,比如开车的时候 手和脚共同来驾驶 汽车 ,比如唱歌跳舞也是同时进行的,再比如边吃饭边打电话;试想如果我们吃饭的时候有一个领导来电,我们肯定是立刻就接听了。但是如果你吃完饭再接听或者回电话,很可能会被开除。

注意:

多任务的概念

什么叫 多任务 呢?简单地说,就是操作系统可以同时运行多个任务。打个比方,你一边在用浏览器上网,一边在听MP3,一边在用Word赶作业,这就是多任务,至少同时有3个任务正在运行。还有很多任务悄悄地在后台同时运行着,只是桌面上没有显示而已。

现在,多核CPU已经非常普及了,但是,即使过去的单核CPU,也可以执行多任务。由于CPU执行代码都是顺序执行的,那么,单核CPU是怎么执行多任务的呢?

答案就是操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒,这样反复执行下去。表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。

真正的并行执行多任务只能在多核CPU上实现,但是,由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行。 其实就是CPU执行速度太快啦!以至于我们感受不到在轮流调度。

并行与并发

并行(Parallelism)

并行:指两个或两个以上事件(或线程)在同一时刻发生,是真正意义上的不同事件或线程在同一时刻,在不同CPU资源呢上(多核),同时执行。

特点

并发(Concurrency)

指一个物理CPU(也可以多个物理CPU) 在若干道程序(或线程)之间多路复用,并发性是对有限物理资源强制行使多用户共享以提高效率。

特点

multiprocess.Process模块

process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。

语法:Process([group [, target [, name [, args [, kwargs]]]]])

由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)。

注意:1. 必须使用关键字方式来指定参数;2. args指定的为传给target函数的位置参数,是一个元祖形式,必须有逗号。

参数介绍:

group:参数未使用,默认值为None。

target:表示调用对象,即子进程要执行的任务。

args:表示调用的位置参数元祖。

kwargs:表示调用对象的字典。如kwargs = {'name':Jack, 'age':18}。

name:子进程名称。

代码:

除了上面这些开启进程的方法之外,还有一种以继承Process的方式开启进程的方式:

通过上面的研究,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。

当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题,我们可以考虑加锁,我们以模拟抢票为例,来看看数据安全的重要性。

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改。加锁牺牲了速度,但是却保证了数据的安全。

因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。

mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。队列和管道都是将数据存放于内存中 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来, 我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性( 后续扩展该内容 )。

线程

Python的threading模块

Python 供了几个用于多线程编程的模块,包括 thread, threading 和 Queue 等。thread 和 threading 模块允许程序员创建和管理线程。thread 模块 供了基本的线程和锁的支持,而 threading 供了更高级别,功能更强的线程管理的功能。Queue 模块允许用户创建一个可以用于多个线程之间 共享数据的队列数据结构。

python创建和执行线程

创建线程代码

1. 创建方法一:

2. 创建方法二:

进程和线程都是实现多任务的一种方式,例如:在同一台计算机上能同时运行多个QQ(进程),一个QQ可以打开多个聊天窗口(线程)。资源共享:进程不能共享资源,而线程共享所在进程的地址空间和其他资源,同时,线程有自己的栈和栈指针。所以在一个进程内的所有线程共享全局变量,但多线程对全局变量的更改会导致变量值得混乱。

代码演示:

得到的结果是:

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行(其中的JPython就没有GIL)。

那么CPython实现中的GIL又是什么呢?GIL全称Global Interpreter Lock为了避免误导,我们还是来看一下官方给出的解释:

主要意思为:

因此,解释器实际上被一个全局解释器锁保护着,它确保任何时候都只有一个Python线程执行。在多线程环境中,Python 虚拟机按以下方式执行:

由于GIL的存在,Python的多线程不能称之为严格的多线程。因为 多线程下每个线程在执行的过程中都需要先获取GIL,保证同一时刻只有一个线程在运行。

由于GIL的存在,即使是多线程,事实上同一时刻只能保证一个线程在运行, 既然这样多线程的运行效率不就和单线程一样了吗,那为什么还要使用多线程呢?

由于以前的电脑基本都是单核CPU,多线程和单线程几乎看不出差别,可是由于计算机的迅速发展,现在的电脑几乎都是多核CPU了,最少也是两个核心数的,这时差别就出来了:通过之前的案例我们已经知道,即使在多核CPU中,多线程同一时刻也只有一个线程在运行,这样不仅不能利用多核CPU的优势,反而由于每个线程在多个CPU上是交替执行的,导致在不同CPU上切换时造成资源的浪费,反而会更慢。即原因是一个进程只存在一把gil锁,当在执行多个线程时,内部会争抢gil锁,这会造成当某一个线程没有抢到锁的时候会让cpu等待,进而不能合理利用多核cpu资源。

但是在使用多线程抓取网页内容时,遇到IO阻塞时,正在执行的线程会暂时释放GIL锁,这时其它线程会利用这个空隙时间,执行自己的代码,因此多线程抓取比单线程抓取性能要好,所以我们还是要使用多线程的。

GIL对多线程Python程序的影响

程序的性能受到计算密集型(CPU)的程序限制和I/O密集型的程序限制影响,那什么是计算密集型和I/O密集型程序呢?

计算密集型:要进行大量的数值计算,例如进行上亿的数字计算、计算圆周率、对视频进行高清解码等等。这种计算密集型任务虽然也可以用多任务完成,但是花费的主要时间在任务切换的时间,此时CPU执行任务的效率比较低。

IO密集型:涉及到网络请求(time.sleep())、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。

当然为了避免GIL对我们程序产生影响,我们也可以使用,线程锁。

LockRLock

常用的资源共享锁机制:有Lock、RLock、Semphore、Condition等,简单给大家分享下Lock和RLock。

Lock

特点就是执行速度慢,但是保证了数据的安全性

RLock

使用锁代码操作不当就会产生死锁的情况。

什么是死锁

死锁:当线程A持有独占锁a,并尝试去获取独占锁b的同时,线程B持有独占锁b,并尝试获取独占锁a的情况下,就会发生AB两个线程由于互相持有对方需要的锁,而发生的阻塞现象,我们称为死锁。即死锁是指多个进程因竞争资源而造成的一种僵局,若无外力作用,这些进程都将无法向前推进。

所以,在系统设计、进程调度等方面注意如何不让这四个必要条件成立,如何确定资源的合理分配算法,避免进程永久占据系统资源。

死锁代码

python线程间通信

如果各个线程之间各干各的,确实不需要通信,这样的代码也十分的简单。但这一般是不可能的,至少线程要和主线程进行通信,不然计算结果等内容无法取回。而实际情况中要复杂的多,多个线程间需要交换数据,才能得到正确的执行结果。

python中Queue是消息队列,提供线程间通信机制,python3中重名为为queue,queue模块块下提供了几个阻塞队列,这些队列主要用于实现线程通信。

在 queue 模块下主要提供了三个类,分别代表三种队列,它们的主要区别就在于进队列、出队列的不同。

简单代码演示

此时代码会阻塞,因为queue中内容已满,此时可以在第四个queue.put('苹果')后面添加timeout,则成为 queue.put('苹果',timeout=1)如果等待1秒钟仍然是满的就会抛出异常,可以捕获异常。

同理如果队列是空的,无法获取到内容默认也会阻塞,如果不阻塞可以使用queue.get_nowait()。

在掌握了 Queue 阻塞队列的特性之后,在下面程序中就可以利用 Queue 来实现线程通信了。

下面演示一个生产者和一个消费者,当然都可以多个

使用queue模块,可在线程间进行通信,并保证了线程安全。

协程

协程,又称微线程,纤程。英文名Coroutine。

协程是python个中另外一种实现多任务的方式,只不过比线程更小占用更小执行单元(理解为需要的资源)。为啥说它是一个执行单元,因为它自带CPU上下文。这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程。只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的。

通俗的理解:在一个线程中的某个函数,可以在任何地方保存当前函数的一些临时变量等信息,然后切换到另外一个函数中执行,注意不是通过调用函数的方式做到的,并且切换的次数以及什么时候再切换到原来的函数都由开发者自己确定。

在实现多任务时,线程切换从系统层面远不止保存和恢复 CPU上下文这么简单。操作系统为了程序运行的高效性每个线程都有自己缓存Cache等等数据,操作系统还会帮你做这些数据的恢复操作。所以线程的切换非常耗性能。但是协程的切换只是单纯的操作CPU的上下文,所以一秒钟切换个上百万次系统都抗的住。

greenlet与gevent

为了更好使用协程来完成多任务,除了使用原生的yield完成模拟协程的工作,其实python还有的greenlet模块和gevent模块,使实现协程变的更加简单高效。

greenlet虽说实现了协程,但需要我们手工切换,太麻烦了,gevent是比greenlet更强大的并且能够自动切换任务的模块。

其原理是当一个greenlet遇到IO(指的是input output 输入输出,比如网络、文件操作等)操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。

模拟耗时操作:

如果有耗时操作也可以换成,gevent中自己实现的模块,这时候就需要打补丁了。

使用协程完成一个简单的二手房信息的爬虫代码吧!

以下文章来源于Python专栏 ,作者宋宋

文章链接:

如何用Python玩转TF-IDF之寻找相似文章并生成摘要

应用1:关键词自动生成

核心思想是对于某个文档中的某个词,计算其在这个文档中的标准化TF值,然后计算这个词在整个语料库中的标准化IDF值。在这里,标准化是说对原始的计算公式进行了一些变换以取得更好的衡量效果,并避免某些极端情况的出现。这个词的TF-IDF值便等于TF*IDF。对于这个文档中的所有词计算它们的TF-IDF值,并按照由高到低的顺序进行排序,由此我们便可以提取我们想要的数量的关键词。

TF-IDF的优点是快捷迅速,结果相对来说比较符合实际情况。缺点是当一篇文档中的两个词的IDF值相同的时候,出现次数少的那个词有可能更为重要。再者,TF-IDF算法无法体现我词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。存在的解决办法是对文章的第一段和每段的第一句话给予比较大的权重。

应用2:计算文本相似度

明白了对于每个词,如何计算它的TF-IDF值。那么计算文本相似度也轻而易举。我们已经计算了文章中每个词的TF-IDF值,那么我们便可以将文章表征为词的TF-IDF数值向量。要计算两个文本的相似度,只需要计算余弦即可,余弦值越大,两个文本便越相似。

应用3:自动摘要

2007年,美国学者的论文A Survey on Automatic Text Summarization总结了目前的自动摘要算法,其中很重要的一种就是词频统计。这种方法最早出自1958年IBM公司一位科学家的论文The Automatic Creation of Literature Abstracts。这位科学家认为,文章的信息都包含在句子中,有的句子包含的信息多,有的句子包含的信息少。自动摘要就是找出那些包含信息最多的句子。那么句子的信息量怎么衡量呢?论文中采用了关键词来衡量。如果包含的关键词越多,就说明这个句子越重要,这位科学家提出用Cluster的来表示关键词的聚集。所谓簇,就是包含多个关键词的句子片段。

以第一个图为例,其中的cluster一共有7个词,其中4个是关键词。因此它的重要性分值就等于(4*4)/7=2.3。然后,找出包含cluster重要性分值最高的句子(比如5句),把它们合在一起,就构成了这篇文章的自动摘要。具体实现可以参见Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites(O'Reilly, 2011)一书的第8章,Python代码见github。这种算法后来被简化,不再区分cluster,只考虑句子包含的关键词。伪代码如下。

Summarizer(originalText,?maxSummarySize):

//?计算文本的词频,生成一个列表,比如[(10,'the'),?(3,'language'),?(8,'code')...]

wordFrequences?=?getWordCounts(originalText)

//?过滤掉停用词,列表变成[(3,?'language'),?(8,?'code')...]

contentWordFrequences?=?filtStopWords(wordFrequences)

//?按照词频的大小进行排序,形成的列表为['code',?'language'...]

contentWordsSortbyFreq?=?sortByFreqThenDropFreq(contentWordFrequences)

//?将文章分成句子

sentences?=?getSentences(originalText)

//?选择关键词首先出现的句子

setSummarySentences?=?{}

foreach?word?in?contentWordsSortbyFreq:

firstMatchingSentence?=?search(sentences,?word)

setSummarySentences.add(firstMatchingSentence)

if?setSummarySentences.size()?=?maxSummarySize:

break

//?将选中的句子按照出现顺序,组成摘要

summary?=?""

foreach?sentence?in?sentences:

if?sentence?in?setSummarySentences:

summary?=?summary?+?"?"?+?sentence

return?summary

类似的算法已经被写成了工具,比如基于Java的Classifier4J库的SimpleSummariser模块、基于C语言的OTS库、以及基于classifier4J的C#实现和python实现。

python论文参考文献有哪些

关于python外文参考文献举例如下:

1、A Python script for adaptive layout optimization of trusses.

翻译:用于桁架的自适应布局优化的Python脚本。

2、a python library to extract, compare and evaluate communities from complex networks.翻译:用于从复杂网络中提取,比较和评估社区的python库。

3、Multiscale finite element calculations in Python using SfePy.

翻译:使用SfePy在Python中进行多尺度有限元计算。

4、Python-based Visual Recognition Classroom.

翻译:基于Python的视觉识别教室。

5、High‐performance Python for crystallographic computing.

翻译:用于晶体学计算的高性能Python。

6、Python programming on win32.

翻译:Win32上的Python编程。

7、A Python package for analytic cosmological radiative transfer calculations.

翻译:一个用于分析宇宙学辐射传递计算的Python包。

Python genes get frantic after a meal.

翻译:饭后Python基因变得疯狂。

A Python toolbox for controlling Magstim transcranial magnetic stimulators.

翻译:用于控制Magstim经颅磁刺激器的Python工具箱。

参考资料来源:百度百科-参考文献

参考资料来源:中国知网-a python library

python数据挖掘技术及应用论文怎么写

python数据挖掘技术及应用论文选题如下:

1、基于关键词的文本知识的挖掘系统的设计与实现。

2、基于MapReduce的气候数据的分析。

3、基于概率图模型的蛋白质功能预测。

4、基于第三方库的人脸识别系统的设计与实现。

5、基于hbase搜索引擎的设计与实现。

6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。

7、客户潜在价值评估系统的设计与实现。

8、基于神经网络的文本分类的设计与实现。

python背后是一项科技运动

比较官方的说法,python是一种解释型语言,解释型语言是指代码一行一行的解释执行,就好像有个 同声传译 ,你每说一句话,他都能不间断地给你翻译,把你说的话(意指写好的代码)翻译成机器能够理解的语言。对于机器来说,这些翻译后的语言就是机器语言,就是指令,机器收到指令后,就会根据指令执行对应的操作。

与解释型语言相对的,有编译型语言,编译型语言则通过编译器先将代码翻译成机器语言,再交给机器去执行。举个例子,我方主持了一个会议,参会的分别有英国人、俄国人和西班牙人,他们三方都带了自己的同声传译。假如是解释型语言呢,我在开会的时候用一种每个同声传译都听得懂的的语言,也就是一种官方用语。这样我可以不间断地用这种语言来做交流,因为这些翻译人员都会为这三国参会人员同步翻译成目标语言,你应该也注意到了,解释型语言类似于一种通用的语言。而如果是编译型语言呢,我会让我这边的3个翻译人员将我的一份中文演讲稿,分别翻译成英文版的、俄文版的和西班牙语版的,在开会的时候,我只要交给参会的国际友人去翻阅就好了。解释型语言侧重的是一种通用的、能够实时解释翻译的特性,而编译型语言侧重的是有针对性、提前准备的特性。然而,在开会的时候,解释型效率是没有那么高的,因为需要同声传译消耗时间去做翻译,而编译型的效率会高些,因为翻译工作已经在开会前做好了,只需要参会人员理解并且执行就好。

1989年的圣诞节,荷兰程序员Guido van Rossum( 吉多·范罗苏姆 ,以下简称吉多)在家休假无聊,为了打发时间,他开发了一种新的解释型语言。可见,该程序员无聊的时候,就是写代码。因为作者非常喜欢 Monty Python's Flying Circus (巨蟒剧团之飞翔的马戏团,这是英国的一个电视喜剧),就拿python作为这个新语言的名字。我想大家不一定都知道这部喜剧,但是可能都听说过python,可能微信在几天前给你推过python相关的培训广告,可能一些学校已经将掌握python基础概念作为一门选修课,可能你的智能家居里的操作系统有一部分核心代码是用python实现的,可能你的手机里有一个插件也是用python实现的,python现在的应用范围非常广泛,功能也非常强大。

吉多之前在 荷兰数学和计算机科学研究学会 上班,在那里,他为ABC编程语言工作了好多年。 ABC语言长这样的

这是一个函数,你也许看不懂,根据英文单词,或许可以大概猜出点什么。这里只想让你知道,python也差不多长这样,相比较会更容易理解些。

ABC虽然是一门编程语言,它的定位是作为教学或原型设计的工具,是专门为学校老师或者科研人员设计的。ABC的定位决定了它受众不是很广泛,并且它也有使用门槛,对计算机不了解的人,没有经过一段时间的学习,可能根本就上不了手。所以,ABC并不能作为一门通用的编程语言,在业内也无法获得成功。虽然说ABC没有python那么成功,但是ABC可以说是"the mother of python",作者在很多地方都借鉴了ABC,取其精华、取其糟粕。现如今,python是长这样的

可能对于没接触过编程的人来说,它们两不都是一样的,不都是一堆英文字母么,我都看不懂。但是对于初学计算机课程,那些需要学习C语言的人来说,python相比较算是更容易理解了。python非常简短,一些复杂的流程,在C语言中,可能需要几十行代码,但是在python中,可能就只需要几行代码。当然不同的业务场景,可能不是这样的,但是普遍情况下,用python的开发效率是非常高的。python适合快速开发,适合产品快速迭代出新。

1999年1月,也就是语言面世的10年后, 吉多 向DARPA(Defense Advanced Research Projects Agency,美国国防部一个负责科研的下属机构)申请资金。我去翻了下该申请的修订版,修订版在1999年8月份提交,修订版比第一版内容更具有概括性,并且内容翔实,条理清晰,值得翻阅。

该修订版叫 Computer Programming for Everybody ,直译过来,就是针对每个人的计算机编程,翻译为通俗易懂的词——人人编程,人人编程是一种 社会 现象,每个人都有一定的编程能力,并且对计算机有一定的认识,了解软硬件是怎么运转起来的,了解一些软硬件的设计规范,能够通过编程来表达自己的想法,能够通过编程来配置自己的软件,通过编程来控制自己的机器,以改善自己的生活。举个例子,你在某宝买了一个扫地机器人,该机器人支持定义打扫路线,支持设置扫地机器人在需要更换扫把的时候,指示灯显示指定的颜色。你知道扫地机器人可以做什么,有什么操作习惯,这是基于你对一些机器的理解,如果你用过很多软件,或者参与过软件的设计,你大概都知道一些软件可能都有“设置”、“编辑”或“帮助”等菜单键。这种设计思维,或者操作习惯,都是很多软件都有的,有了这种认识之后,你面对很多同类型的软件、或者同类型的产品,就大概能够知道从那里入手,以及对它有什么功能,都有一个初步的期待或者认识。既然大家都了解计算机了,那么计算机的一些概念或者说是理念,可以说是属于常识的一部分,面对一些计算机或者说智能设备,也大概知道从哪里上手使用。我觉得这就是作者要达到的愿景。

该修订版主要有几个目的:

在这里,他想从推广python开始,因为python作为一门适合快速开发的工具,既适合专家,也适合初学者,同时python有一个活跃的且不断增长的用户群体,这个用户群体对他这个申请也非常感兴趣,愿意为之努力。python的用户数多,说明已经在市场得到了一定的认可,并且这个用户群体也愿意为python的发展做贡献,这对于一门编程语言来说,最好不过了。

该提案的 基本论点 部分写得很好,他说他想普及计算机应用,但并非通过介绍新的硬件,或者新软件这种形式,而是通过赋予每个人编程能力来实现。信息技术的发展给了人们各种强大的计算机,它们以桌面电脑、笔记本电脑或者嵌入式系统的形式存在,如果用户在软件设计和实现上有一个通用的认知,那将会极大地促进生产和创造,并且对未来有深远的影响。试想一下,如果你有一种修改和配置软件的能力,并且你可以把你的修改通过社区网站分享其他人,其他人碰到同样的问题的话,就可以参照你的方法。这种能力在紧急的情况下是很重要的,你不必等专家来给你解决问题,你自己就可以尝试解决这些问题。说到这里,你有没有想起贴吧,或者论坛,论坛有很多个板块,不同的领域分不同的板块,假如你想root手机(手机越狱,指解除手机厂商的限制,获取手机的用户最高权限,以实现对手机的某种控制),你可以到论坛上root板块找答案,这种形式可谓跟吉多提到的是一样的。如果你对你的手机或者电脑有更深入的了解,你可以通过编程改善你的输入法,或者改变你的显示器冷暖色等等,这些都是对你生活有帮助的。吉多在这里就是想达到这种状态,简单点说,人人都对计算机有一定的了解,且都有处理计算机问题的能力。

为了实现这个目标,作者制定了5年计划,这个5年计划如下:

5年计划循序渐进,由浅入深。1999年3月,美国国防部对此进行了回应,同意拨款给他。作者的5年计划在1999年底开始实施,虽然想推进5年,但是只收到1年的资金支持。不过,作者还是没有放弃这个项目,一直推进,直到他不再参与python的工作。当时美国国防部对他们提供了多少资金呢,我没看到官方公开的数据。2013年有报道称,DARPA向Continuum Analytics提供3百万美元的支持,让该公司给python开发数据处理以及数据可视化工具。具体数字是否可靠,这个尚不清楚,但管中窥豹,可见美国国防部对该项目表示认可,并提供了资金支持。Continuum Analytics有一个比较有名的工具,叫Anaconda,Anaconda可以理解为是python + 各种科学计算库的工具箱,Anaconda官网有这么一句话

翻译为“Continuum Analytics的Anaconda是使用python的、领先的开源科学计算平台,我们赋予那些正在改变世界的人超能力。”

在查资料的时候,我发现了一个wiki论坛, 该论坛对该项目进行了评价,论坛列出了该项目成功的地方和失败的地方,以及一些 社会 人士的看法。论坛这样总结道,这个项目成功的地方在于:

这个项目失败的地方在于:

回想自己初学python的时候,我觉得这个总结是很公正的。python确实容易入门,有编程基础的人可能只需要一个星期就能掌握python的一些基本语法。相比C语言,python对于初学者是很友好的,很容易让人上手。但是,要深入理解python,并没有这么简单,需要花很多时间去磨练。接手一个使用python的项目,你需要花一些时间精力去熟悉,去摸透里面的逻辑,这对于初学者来说,是无法避免的。 对于一个程序员来说,作者能想象到以后计算机的普及应用,以及用户的认知水平,还有他能够做什么,通过什么来实现,能有这些远大的抱负,这是非常不容易的。西方世界经常说到“change the world,make the world a better place”,作者也确实做到了,他设计的python在计算机世界里扮演者一个非常重要的角色。如果通过 科技 能够改变世界,那么python就是改变世界的其中一步。1980-2000年,美国对 科技 公司是政策扶持、技术扩散,这期间涌现了如IBM、HP、思科等 科技 公司,大家熟知的微软和苹果都是在这期间上市的。python可以说是这个 科技 运动的一个缩影,在 科技 浪潮的推动下,python得到了长足的发展。

很多 科技 或工业相关的网站会根据当年编程语言的流行度做下排名,它们会列出当年在业界最受欢迎的编程语言。其中,IEEE Spectrum 和 TIOBE 的2021年度编程语言是python,如果我还没记错的话,TIOBE的2020年度编程语言也是python。可见python是非常受欢迎的,用现在的话讲,就是“网红”编程语言。现在,很多计算设备上都有python的身影,小到智能家居、手机、智能手表,大到锂电车、工控车床、甚至航天飞机都有python的身影。你可能在浏览网页的时候,右下角弹出一个“7天python入门”的广告,可见python现在还是有很多需求,因为有需求,所以才有人去投广告,才会有人去找培训机构。

作者在给美国国防部的提案中写到,他想跟高中或大学展开合作,设计一些python的课程,针对不同年级,设计不同水平的课程。现在来看,他确实是做到了,现在哈佛、密歇根大学等排名靠前的大学,都有python课程,python在这些大学的CS(计算机科学)课程中应用非常广泛,可以说是作为CS导论的一个教学工具。在一些比较高级的课程,比如数据科学、人工智能等都可以看到python的身影,这是因为学术界以及工业界为python提供了一些处理科学计算和大数据的工具,这也归功于美国国防部的支持。美国有许多编程夏令营,针对不同年龄段有不同的课程,并且也有许多支持python代码的编程竞赛。Google在coursera上有一个面向初学者的课程,该课程叫 Google IT Automation with Python,完成课程大约需要 8 个月,课程建议每周花5小时学习,课程结束后就可以获得Google颁发的证书。可见,不管是工业界,还是教育界,都对python有不同程度的支持。这里打个岔,第一版的Google搜索引擎还是用python写的,作者也在Google工作了一段时间。

现如今,每隔一段时间,就有一个PyCon活动,这个活动汇聚世界各地的开发者,每年都有开发者来展示他们使用python的成功案例,或者表达自己对python的新功能或者缺陷的看法。可见,python用户社区一直都是很活跃的。这让我想到了某新能源 汽车 ,该 汽车 用户有很高的粘性,有一位车主跟我说过,他们有一个微信群,里面有该新能源 汽车 的高管,很多车主乐意在里面指出问题,或者提建议,因为这些高管会对问题或者建议做出相应的反馈。用户愿意提意见,产品经理愿意广开言路,采纳多方建议,实属不易。python社区也差不多如此。

几年前,你是否看过一个新闻,《人工智能“网红”编程语言Python进入山东小学课本》,这是2017年澎湃网的一则新闻,里面讲了python进入了山东省小学六年级教材,作为一门“网红”编程语言,它是否适合低龄学生,这个倒是没细说,但是可见国内有些地方是把编程作为一种比较基础的能力来考量。python往低龄阶段渗透是否合适呢,我在翻资料的时候瞥到韩国高丽大学的一篇论文,论文讲述小学生在学习python的过程中会碰到一些困难,比如经常少打了一些括号,经常拼错单词,经常碰到语法错误,以及对这些现象的看法。还有,南京师范大学有一篇报道,讲述了中学生学习在学习python时,采用面向问题的学习模式,我理解是case by case的教学模式,这种模式有利于学生培养学生的计算机思维,以及帮助他们理解一些计算机相关的概念,解决计算机相关的问题。

python是否适合低龄学生呢,我觉得这个是值得讨论的话题。最后还要问你一句,你会让你的小孩学习python么,从什么时候开始学呢?你的娃因为不知道打多少个括号嚎啕大哭时,你能帮得上忙么?你到时候需要专门请一个程序员来给你的娃做家教么?

-

(责任编辑:IT教学网)

更多

推荐CMS技巧文章