矩阵与矩阵相乘怎么算(矩阵与矩阵相乘怎么算公式)
矩阵乘法怎么算?
比如乘法AB
一、
1、用A的第1行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第1行第1列的数;
2、用A的第1行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第1行第2列的数;
3、用A的第1行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第1行第3列的数;
依次进行,(直到)用A的第1行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第1行第末列的的数。
二、
1、用A的第2行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第2行第1列的数;
2、用A的第2行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第2行第2列的数;
3、用A的第2行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第2行第3列的数;
依次进行,(直到)用A的第2行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第2行第末列的的数。
依次进行,
(直到)用A的第末行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第末行第1列的数;
用A的第末行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第末行第2列的数;
用A的第末行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第末行第3列的数;
依次进行,
(直到)用A的第末行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第末行第末列的的数。
扩展资料:
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义[1]。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。
参考资料:矩阵乘法_百度百科
矩阵乘法如何计算?详细步骤!
回答:
此题2行2列矩阵乘以2行3列矩阵。
所得的矩阵是:2行3列矩阵
最后结果为: |1 3 5|
|0 4 6|
拓展资料
1、确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。
图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
2、计算结果矩阵的行列数。画一个空白的矩阵,来代表矩阵乘法的结果。矩阵A和矩阵B相乘得到的矩阵,与矩阵A有相同的行数,与矩阵B有相同的列数。你可以先画出白格来代表结果矩阵中的行列数。
矩阵A有2行,所以结果矩阵也有2行。
矩阵B有2列,所以结果矩阵也有2列。
最终的结果矩阵就有2行2列。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
3、计算第一个“点”。要计算矩阵中的第一个“点”,你需要用第一个矩阵第一行的第一个数乘以第二个矩阵第一列的第一个数,第一行的第二个数乘以第一列的第二个数,第一行的第三个数乘以第一列的第三个数,然后将这三个结果加到一起,得到第一个点。先来计算一下结果矩阵中第二行第二列的数,下面是算法:
6 x -5 = -30
1 x 0 = 0
2 x 2 = -4
-30 + 0 + (-4) = -34
结果是-34,对应了矩阵最右下角的位置。
在你计算矩阵乘法时,结果所处的行列位置要满足,行和第一个矩阵的行相同,列和第二个矩阵的列相同。比如,你用矩阵A最下面一行的数乘以矩阵B最右一列的数,得到的结果是-34,所以-34应该是结果矩阵中最右下角的一个数。
? ?
4、计算第二个“点”。比如计算最左下角的数,你需要用第一个矩阵最下面一行的数乘以第二个矩阵最左列的数,然后再把结果相加。具体计算方法和上面一样。
6 x 4 = 24
1 x (-3) = -3
(-2) x 1 = -2
24 + (-3) + (-2) = 19
结果是-19,对应矩阵左下角的位置。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
5、在计算剩下的两个“点”。要计算左上角的数,用矩阵A的最上面一行的数乘以矩阵B左侧一列的数,下面是具体算法:
2 x 4 = 8
3 x (-3) = -9
(-1) x 1 = -1
8 + (-9) + (-1) = -2
结果是-2,对应的位置是左上角。
要计算右上角的数,用矩阵A的最上面一行的数乘以矩阵B右侧一列的数,下面是具体算法:
2 x (-5) = -10
3 x 0 = 0
(-1) x 2 = -2
-10 + 0 + (-2) = -12
结果是-12,对应的位置是右上角。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
6、检查相应的数字是否出现在正确的位置。19在左下角,-34在右下角,-2在左上角,-12在右上角。
矩阵的乘法运算是什么?
矩阵乘法运算一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。
值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
扩展资料:
矩阵作为高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用。
计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
参考资料来源:百度百科-矩阵乘法
线性代数中矩阵相乘如何计算啊
左边矩阵的行的每一个元素 与右边矩阵的列的对应的元素一一相乘然后加到一起形成新矩阵中的aij元素 i是左边矩阵的第i行 j是右边矩阵的第j列
例如 左边矩阵:
2 3 4
1 4 5
右边矩阵
1 2
2 3
1 3
相乘得到: 2×1+3×2+4×1 2×2+3×3+4×3
1×1+4×2+5×1 1×2+4×3+5×3
这样2×2阶的一个矩阵
扩展资料:
矩阵乘法
(1) mxn的矩阵T乘向量x可以理解为将这个n维列向量线性映射为一个m维列向量:
(2) 而一个mxn矩阵乘nxL 矩阵就是先进行一个线性映射再进行一个线性映射.
这叫做线性映射的复合。线性映射的复合是另一个线性映射。映射T和映射S的复合记做:T o S.
将映射表示为矩阵。则线性映射的复合就是对应的矩阵相乘.
(3) 由于复合映射的前一个映射的目标空间是另一个的域空间。所以矩阵乘法要求第一个的列数要等于第二个的行数。
将新基矩阵T的每一行向量看做一个用原基向量(i,j,k,...)表示的一个新的轴/基,若共R行,即R维度,新的空间共R个轴,将X的每一列都看做为一组特征向量,每一列的特征相同都是n维的点(x11,x12,..,x1n)(x1表示第一列向量),只是不同列的赋值不同。
相乘的结果为矩阵Y,那么Y内的某个值,即是某列特征在某个轴上的投影大小,Y的某行向量,即是所有特征在某轴上的投影结果,Y的列向量,即是某个特征(原坐标的一个点)在新的空间的投影/新值,R维的点(t1x1,t2x1,...,trx1)。
Y矩阵表示的是,原坐标中所有点,通过T坐标空间的转换,得到的新的空间点集合。
参考资料:百度百科——矩阵乘法
矩阵的乘法是什么?
矩阵与矩阵相乘,第一个矩阵的列数一必须等于第二个矩阵的行数,假如第一个是m*n的矩阵,第二个是n*p的矩阵,则结果就是m*p的矩阵,且得出来的矩阵中元素具有以下特点:第一行第一列元素为第一个矩阵的第一行的每个元素和第二个矩阵的第一列的每个元素乘积的和。
以此类推,第i行第j列的元素就是第一个矩阵的第i行的每个元素与第二个矩阵第j列的每个元素的乘积的和。
扩展资料
当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。
矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
矩阵相乘怎么算?
方法:左边矩阵第一行的元素分别与右边矩阵第一列的元素相乘,求和得到相乘矩阵的第一行的第一个元素。左边矩阵第一行的元素分别与右边矩阵第二列的元素相乘,求和得到相乘矩阵的第一行的第二个元素,以此类推。
值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
矩阵乘法注意事项
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。