简述python编程语言的编译过程(python 编译语言)
干货分享!Python基础教程
1.解释Python
编程语言通常分为两类- 解释语言和编译语言。
_编译语言_是指使用编译器事先将源代码编译为可执行指令的_语言_(例如Java)。以后,这些合规指令可以由运行时环境执行。
_解释语言_是指不应用中间编译步骤并且可以将源代码直接提供给运行时环境的语言。在此,_源代码到机器代码的转换_是在程序执行的同时发生的。意味着,任何用python编写的源代码都可以直接执行而无需编译。
2. Python很简单
Python主要是为了强调代码的可读性而开发的,它的语法允许程序员用更少的代码行来表达概念。
根据语言中可用关键字的简单性粗略衡量,Python 3有33个关键字,Python 2有31个关键字。相比之下,C ++有62个关键字,Java有53个关键字。Python语法提供了一种易于学习和易于阅读的简洁结构。
3.与其他语言比较
· Python使用_换行符来完成一条语句_。在其他编程语言中,我们经常使用分号或括号。
· Python依靠缩进(使用空格)来定义范围,例如循环,函数和类。为此,其他编程语言通常使用花括号。
4.用途和好处
Python可用于快速原型制作或可用于生产的软件开发。以下列表列出了python的一些流行用法。
· Python有一个庞大而健壮的标准库,以及许多用于开发应用程序的有用模块。这些模块可以帮助我们添加所需的功能,而无需编写更多代码。
· 由于python是一种解释型高级编程语言,它使我们无需修改即可在多个平台上运行相同的代码。
· Python可用于以程序样式,面向对象样式或功能样式编写应用程序。
· Python具有分析数据和可视化等功能,可帮助创建用于_大数据分析,机器学习和人工智能的_自定义解决方案。
· Python还用于机器人技术,网页抓取,脚本编写,人脸检测,颜色检测和3D应用程序中。我们可以使用python构建基于控制台的应用程序,基于音频的应用程序,基于视频的应用程序,企业应用程序等。
以上就是关于Python基础教程的相关分享,希望对大家有所帮助,想要了解更多相关内容,欢迎及时关注本平台!
什么是python编程
Python是一门新兴的编程语言,编程语言有很多,比如C++、Java、C#、PHP、JavaScript等,Python也是其中之一,在学习Python前,我们需要对它有一定的了解。
Python支持多种编程范型,如函数式、指令式、结构化、面向对象和反射式编程。
Python解释器易于扩展,可以使用C或C++或其他可以通过C调用的语言扩展新的功能和数据类型。
Python编写的程序不需要编译成二进制代码,可以直接从源代码运行程序,在计算机内部,Python解释器把源代码转换成字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。
语法简洁而清晰,具有丰富和强大的类库,使用Python快速生成程序的原型,然后对其中有特别要求的部分,用更合适的语言改写,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。
只有基础建牢固了,才会更利于我们以后的发展及进步,现如今Python的发展十分迅速,已经将C++语言甩在了后边,在不久的将来,可能会超过C和Java这些主流语言。
python师先编译后解释的吗
1、C++和C都是属于编译型语言,本来的.c文件都是用高级语言编写的,计算机是不能识别高级语言的,所以,必须要通过编译,链接等手段,将.c文件转换成可执行文件,可执行文件就是纯二进制文件,然后计算机才能够执行。
unix./p:(p是可执行文件)
上述命令的过程,是外壳(shell)调用操作系统一个叫加载器的函数,它拷贝可执行文件p中的代码和数据到存储器,然后将控制转移到这个程序的开头。
2、
1. Python是一门解释型语言?
我初学Python时,听到的关于Python的第一句话就是,Python是一门解释性语言,我就这样一直相信下去,直到发现了*.pyc文件的存在。如果是解释型语言,那么生成的*.pyc文件是什么呢?c应该是compiled的缩写才对啊!
为了防止其他学习Python的人也被这句话误解,那么我们就在文中来澄清下这个问题,并且把一些基础概念给理清。
2. 解释型语言和编译型语言
计算机是不能够识别高级语言的,所以当我们运行一个高级语言程序的时候,就需要一个“翻译机”来从事把高级语言转变成计算机能读懂的机器语言的过程。这个过程分成两类,第一种是编译,第二种是解释。
编译型语言在程序执行之前,先会通过编译器对程序执行一个编译的过程,把程序转变成机器语言。运行时就不需要翻译,而直接执行就可以了。最典型的例子就是C语言。
解释型语言就没有这个编译的过程,而是在程序运行的时候,通过解释器对程序逐行作出解释,然后直接运行,最典型的例子是Ruby。
通过以上的例子,我们可以来总结一下解释型语言和编译型语言的优缺点,因为编译型语言在程序运行之前就已经对程序做出了“翻译”,所以在运行时就少掉了“翻译”的过程,所以效率比较高。但是我们也不能一概而论,一些解释型语言也可以通过解释器的优化来在对程序做出翻译时对整个程序做出优化,从而在效率上超过编译型语言。
此外,随着Java等基于虚拟机的语言的兴起,我们又不能把语言纯粹地分成解释型和编译型这两种。
用Java来举例,Java首先是通过编译器编译成字节码文件(不是二进制码),然后在运行时通过解释器给解释成机器文件。所以我们说Java是一种先编译后解释的语言。
总结:将由高级语言编写的程序文件转换为可执行文件(二进制的)有两种方式,编译和解释,编译是在程序运行前,已经将程序全部转换成二进制码,而解释是在程序执行的时候,边翻译边执行。
3. Python到底是什么
其实Python和Java/C#一样,也是一门基于虚拟机的语言,我们先来从表面上简单地了解一下Python程序的运行过程吧。
当我们在命令行中输入python hello.py时,其实是激活了Python的“解释器”,告诉“解释器”:你要开始工作了。可是在“解释”之前,其实执行的第一项工作和Java一样,是编译。
熟悉Java的同学可以想一下我们在命令行中如何执行一个Java的程序:
javac hello.java(编译的过程)
java hello(解释的过程)
只是我们在用Eclipse之类的IDE时,将这两部给融合成了一部而已。其实Python也一样,当我们执行python hello.py时,他也一样执行了这么一个过程,所以我们应该这样来描述Python,Python是一门先编译后解释的语言。
4. 简述Python的运行过程
在说这个问题之前,我们先来说两个概念,PyCodeObject和pyc文件。
我们在硬盘上看到的pyc自然不必多说,而其实PyCodeObject则是Python编译器真正编译成的结果。我们先简单知道就可以了,继续向下看。
当python程序运行时,编译的结果则是保存在位于内存中的PyCodeObject中,当Python程序运行结束时,Python解释器则将PyCodeObject写回到pyc文件中。
当python程序第二次运行时,首先程序会在硬盘中寻找pyc文件,如果找到,则直接载入,否则就重复上面的过程。
所以我们应该这样来定位PyCodeObject和pyc文件,我们说pyc文件其实是PyCodeObject的一种持久化保存方式。
总结:Python也是先编译后解释的一门语言,当python程序运行时,编译的结果是保存在内存中的PyCodeObject中,当Python程序运行结束时,Python解释器则将PyCodeObject写回到pyc文件中。也就是说保存,pyc文件是为了下次再次使用该脚本时避免重复编译,以此来节省时间。也就是说,只执行一次的脚本,就没必要保存其编译结果pyc,这样只是浪费空间。下面举例解释。
5、?运行一段Python程序
我们来写一段程序实际运行一下:
程序本身毫无意义。我们继续看:
然而我们在程序中并没有看到pyc文件,仍然是test.py孤零零地呆在那!(因为,test.py只是一次性的脚本文件,系统任务仅是会调用一次,所以,生成pyc文件只是浪费空间而已)那么我们换一种写法,我们把print_str方法换到另外的一个python模块中:
6. pyc的目的是重用
回想本文的第二段在解释编译型语言和解释型语言的优缺点时,我说编译型语言的优点在于,我们可以在程序运行时不用解释,而直接利用已经“翻译”过的文件。也就是说,我们之所以要把py文件编译成pyc文件,最大的优点在于我们在运行程序时,不需要重新对该模块进行重新的解释。
所以,我们需要编译成pyc文件的应该是那些可以重用的模块,这于我们在设计软件类时是一样的目的。所以Python的解释器认为:只有import进来的模块,才是需要被重用的模块。
这个时候也许有人会说,不对啊!你的这个问题没有被解释通啊,我的test.py不是也需要运行么,虽然不是一个模块,但是以后我每次运行也可以节省时间啊!
OK,我们从实际情况出发,思考下我们在什么时候才可能运行python xxx.py文件:
A. 执行测试时。
B. 开启一个Web进程时。
C. 执行一个程序脚本。
我们逐个来说,第一种情况我们就不用多说了,这个时候哪怕所有的文件都没有pyc文件都是无所谓的。
第二种情况,我们试想一个webpy的程序把,我们通常这样执行:
总结:只有模块文件会被认为是可能被重用的,所以,只用模型文件才会保存编译或者(编译+解释)后的结果.pyc文件。
6、?pyc的过期时间
说完了pyc文件,可能有人会想到,每次Python的解释器都把模块给持久化成了pyc文件,那么当我的模块发生了改变的时候,是不是都要手动地把以前的pyc文件remove掉呢?
当然Python的设计者是不会犯这么白痴的错误的。而这个过程其实就取决于PyCodeObject是如何写入pyc文件中的。
我们来看一下import过程的源码吧:
这段代码比较长,我们只来看我标注了的代码,其实他在写入pyc文件的时候,写了一个Long型变量,变量的内容则是文件的最近修改日期,同理,我们再看下载入pyc的代码:
不用仔细看代码,我们可以很清楚地看到原理,其实每次在载入之前都会先检查一下py文件和pyc文件保存的最后修改日期,如果不一致则重新生成一份pyc文件。
8. 写在最后的
其实了解Python程序的执行过程对于大部分程序员,包括Python程序员来说意义都是不大的,那么真正有意义的是,我们可以从Python的解释器的做法上学到什么,我认为有这样的几点:
A.?其实Python是否保存成pyc文件和我们在设计缓存系统时是一样的,我们可以仔细想想,到底什么是值得扔在缓存里的,什么是不值得扔在缓存里的。只有要重用的模块才是值得编译成pyc文件的。
B. 在跑一个耗时的Python脚本时,我们如何能够稍微压榨一些程序的运行时间,就是将模块从主模块分开。(虽然往往这都不是瓶颈),那么再次运行时,就可以不用编译了,直接使用上次编译后的结果。
C. 在设计一个软件系统时,重用和非重用的东西是不是也应该分开来对待,这是软件设计原则的重要部分。
D. 在设计缓存系统(或者其他系统)时,我们如何来避免程序的过期,其实Python的解释器也为我们提供了一个特别常见而且有效的解决方案。
总结:Python是编译+解释型的语言,执行的时候是由Python解释器,逐行编译+解释,然后运行,因为在运行的过程中,需要编译+解释,所以Python的运行性能会低于编译型语言,比如C++。为了提高性能,Python解释器,会将模块(以后要重用的脚本文件放在模块里)的编译+解释的结果,保存在.pyc中。这样下次执行的时候,就省了编译这个环节。提高性能。一次性的脚本文件,解释器是不会保存编译+解释的结果,也就是没有.pyc文件。
python中怎样对编写的程序进行编译和执行
1、说明 编译python程序就是把python脚本转换成操作系统中的可执行文件,一般使用pyinstaller来完成。 2、步骤 1)安装pyinstaller 使用pip install pyinstaller命令来安装 2)编译脚本 python安装目录\script\pyinstaller 脚本文件名
Python是什么编程语言,和C++比怎么样?
python是解释语言,c++是编程语言。
1、编译器是off-line,解释器是on-line。编译器把整个程序读进来,进行一系列变大变小转化优化的过程,产生可执行文件,然后编译器退出,由可执行文件来读取和输出数据,python main.py这个命令会启动python虚拟机和解释器,将main.py的代码一行一行解释,只不过不同于REPL,它不会把每一行表达式的值打印出来。
2、Python是一种解释执行的语言,Python的缩进要求十分严格,通过缩进来区别代码块,C++是一种需要编译执行的语言,通过大括号来区分代码块。C++的工作方式是,首先将写好的代码保存到扩展名为.cpp的文件中,然后编译.cpp文件。编译器将C++代码转换为原生代码。然后执行这些机器代码。因此,C++非常靠近硬件。
、C++和Python都是从C语言演变出来的面向对象的编程语言,将相关数据和操作数据的方法打包成一个类,不同的类相互隔离,也可以自由组合,类是一组数据以及操这组数据的函数(方法)的集合。类是对象的抽象模板,对象是类的具体实例,给类的数据取不同的值,同一个类就产成了不同的对象。