python爬虫网页万能模板(python 爬虫 网页)
用python写爬虫有哪些框架?
1、Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。它是很强大的爬虫框架,可以满足简单的页面爬取,比如可以明确获知url pattern的情况。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求。
2、pyspider
是一个用python实现的功能强大的网络爬虫系统,能在浏览器界面上进行脚本的编写,功能的调度和爬取结果的实时查看,后端使用常用的数据库进行爬取结果的存储,还能定时设置任务与任务优先级等。
3、Crawley可以高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等。
4、Portia是一个开源可视化爬虫工具,可让使用者在不需要任何编程知识的情况下爬取网站!简单地注释自己感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。简单来讲,它是基于scrapy内核;可视化爬取内容,不需要任何开发专业知识;动态匹配相同模板的内容。
5、Grab是一个用于构建Web刮板的Python框架。借助Grab,您可以构建各种复杂的网页抓取工具,从简单的5行脚本到处理数百万个网页的复杂异步网站抓取工具。Grab提供一个API用于执行网络请求和处理接收到的内容,例如与HTML文档的DOM树进行交互。
4种Python爬虫(3. 微信小程序,如,超级猩猩)
目录:
1. PC网页爬虫
2. H5网页爬虫
3. 微信小程序爬虫
4. 手机APP爬虫
爬取超级猩猩的课表,该平台仅提供了微信小程序这一个途径,前面两种针对html网页的爬取方式都不再适用。
采用抓包分析是我们制定方案的第一步。
我用的Mac电脑,fiddler只有一个简化版,所以另找了Charles这个类似的软件。启动Charles的代理,在手机WIFI中设置好对应的代理就可以开抓了。但是,抓到的https包的内容都是乱码,咋办?
Charles中提供了ssl证书,在手机端安装证书即可。推荐使用iPhone,直接安装描述文件即可。Android手机必须使用系统版本在7.0以下的才行,7.0以上还需要反编译什么的,太麻烦了。
很容易的定位到了超级猩猩微信小程序载入课表的后台接口。拿这个URL在浏览器里访问试试,直接返回了json结果!超级猩猩很友好!
提取对应的URL,放到浏览器中验证,也可以支持返回json包,剩下就是分析一下这个json的数据结构,按照需要的方式导出了。
直接通过接口的爬取效率非常高,几秒钟就拉取了全国各个门店的排课,相当舒心。(下图的录屏没有进行加速)
最后一个挑战就是对只有Android/iOS的APP端应用数据的爬取。请看下一章
请点击: 下一页
python的爬虫框架有哪些?
1.Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中
2.pyspider 是一个用python实现的功能强大的网络爬虫系统,能在浏览器界面上进行脚本的编写,功能的调度和爬取结果的实时查看,后端使用常用的数据库进行爬取结果的存储,还能定时设置任务与任务优先级等。
3.Crawley可以高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等
4.Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。
还有很多,比如Newspaper,Grab,Cola等等
爬虫框架学习可以看一下黑马程序员视频库的学习视频,免费学习哦!很高兴能为你提供帮助
Python有哪些常见的,好用的爬虫框架
网络爬虫的抓取策略有很多种,按照系统结构和实现技术,大致可以分为以下几种:通用网络爬虫(GeneralPurposeWebCrawler)、聚焦网络爬虫(FocusedWebCrawler)、增量式网络爬虫(IncrementalWebCrawler)、深层网络爬虫(DeepWebCrawler)。
增量式网络爬虫是指对已下载网页采取增量式更新和只爬行新产生的或者已经发生变化网页的爬虫,它能够在一定程度上保证所爬行的页面是尽可能新的页面。
一般网络爬虫的爬行范围和数量很大,爬行速度和存储空间要求很高,爬行页面的顺序也比较低。同时,由于需要刷新的页面太多,通常采用并行工作,但刷新一页需要很长时间。
聚焦网络爬虫是指选择性地爬行与预定义主题相关的网络爬虫。与普通网络爬虫相比,聚焦爬虫只需爬行与主题相关的网页,大大节省了硬件和网络资源,保存的网页也因数量少而更新快,还能很好地满足一些特定人群对特定领域信息的需求。
DeepWeb爬虫,也就是深层网页爬虫,在深层网页容量是表层网页的数百倍,是互联网上最大、发展最快的新信息资源。
python网页爬虫教程
现行环境下,大数据与人工智能的重要依托还是庞大的数据和分析采集,类似于淘宝 京东 百度 腾讯级别的企业 能够通过数据可观的用户群体获取需要的数据,而一般企业可能就没有这种通过产品获取数据的能力和条件,想从事这方面的工作,需掌握以下知识:
1. 学习Python基础知识并实现基本的爬虫过程
一般获取数据的过程都是按照 发送请求-获得页面反馈-解析并且存储数据 这三个流程来实现的。这个过程其实就是模拟了一个人工浏览网页的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,我们可以按照requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
2.了解非结构化数据的存储
爬虫抓取的数据结构复杂 传统的结构化数据库可能并不是特别适合我们使用。我们前期推荐使用MongoDB 就可以。
3. 掌握一些常用的反爬虫技巧
使用代理IP池、抓包、验证码的OCR处理等处理方式即可以解决大部分网站的反爬虫策略。
4.了解分布式存储
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具就可以了。
4种Python爬虫(4. 手机APP,如,乐刻运动)
目录:
1. PC网页爬虫
2. H5网页爬虫
3. 微信小程序爬虫
4. 手机APP爬虫
爬取乐刻运动手机APP的课表数据。Android和iOS都可以。
要制定具体方案,还是要从抓包分析开始。
如果你在前一章《三、微信小程序爬虫》中已经搭建好了Charles+iPhone的抓包环境,可以直接启动“乐刻APP”再来抓一波。
LefitAppium.py
LefitMitmAddon.py
接下来就是见证奇迹的时刻了!
可以看到左侧的手机已经自动跑起来了!
所有流过的数据都尽在掌握!
这个方案的适应能力非常强,不怕各种反爬虫机制。
但是如果要去爬取淘宝、携程等海量数据时,肯定也是力不从心。