时依cox回归,cox依时协变量

http://www.itjxue.com  2023-01-16 00:34  来源:未知  点击次数: 

线性回归,logistic回归和cox回归的区别

1、多重线性回归:用于寻找连续性因变量数值随多个自变量变化而变化的直线趋势;强调因变量为连续变量。如研究肺癌患者某肿瘤标记物的水平(连续变量)是否受年龄、性别、吸烟与否及数量等自变量的影响。

2、Logistic回归:用于分析分类变量(或等级变量)和一些影响因素之间的关系,由于因变量非连续变量,与自变量间失去了线性关系的可能性,于是经过Logit变化,将模型转换为线性关系;强调因变量为分类变量或等级变量。如研究肺癌患病与否(二分类变量)是否受年龄、性别、吸烟与否及数量等自变量的影响。以二分类Logistic回归为例。

3、Cox回归:用于研究多个因素对结局事件的影响;因变量与二分类Logistic回归相似,唯一的区别在于Cox回归的因变量引入了时间因素。如分析肺癌生存时间(二分类变量,含时间因素)是否受年龄、性别、吸烟与否及数量等自变量的影响。

时依协变量cox回归模型目的

找出影响生存的危险因素有哪些。时依协变量cox回归是做生存分析的一个半参数模型,目的是找出影响生存的危险因素有哪些,在医学中常用于肿瘤和其他疾病的预后分析,常用的统计软件如SAS和spss都可以实现。

请问Cox回归分析是什么意思?

cox回归是做生存分析的一个半参数模型,目的是找出影响生存的危险因素有哪些,在医学中常用于肿瘤和其他疾病的预后分析.常用的统计软件如SAS和spss都可以实现。

采用分层的cox回归(stratified cox),也就是按协变量分层分析,然而这种方法有个缺点,所谓“分层虽好,也不能贪多啊”。说错了,分层虽好,但该变量也就没有估计结果了。试想,你把主要研究因素分层了,你还研究什么呢?

所以就要说到第二种处理方式,也就是采用时依cox回归,也就是带时依协变量的cox回归。

扩展资料

辅助的(ancillary)时依协变量

辅助的时依协变量,跟内部时依协变量有点不同。内部的顾名思义,主要靠自己,而辅助的,则是靠外部的推动而改变。

比如污染状态,这个如果城市的工厂关闭一段时间,大气状况变成了“优”,如果工厂恢复运作,大气状况变成了“污染”,这就随时间而发生了变化,而且是靠外部力量推动的变化。

再比如,工作状态,本来你可能在一家公司工作,结果公司不景气,裁员了,把你解雇了。这不是你内部自身决定辞职,而是被辞职,这就是外部的辅助力量。

(责任编辑:IT教学网)

更多

相关其他源码文章

推荐其他源码文章