python读什么书(python看什么书)
Python 从入门到精通推荐看哪些书籍呢?
基础篇
1.《笨方法学Python》
《笨方法学Python》的英文版,最初的几章有点枯燥,但如果把书里面所有代码都敲一遍,确实能够把基础打好。
2.《Python学习手册》
这种外国人写的书,都有共同的特点,特别详细,每个知识点给你解释透透的,看的时候可以当作一个字典来翻,这本书确实是面向初学者的。
这本书的前几章是关于python语法的,最后几章是练习案例,但这些案例有点陈旧了,不做也罢。只是看前几章用来入门Python,那么这本书还是不错的。
这本书的前几章是关于python语法的,最后几章是练习案例,但这些案例有点陈旧了,不做也罢。只是看前几章用来入门Python,那么这本书还是不错的。
进阶篇
1.《流畅的python》
这本书的作者水平有点高,洋洋洒洒写了这么厚一本,关键是读的时候啊,感觉到处都有收获。前面几章是关于数据结构的,用上合适的数据结构,可以让代码更简洁,也可以让代码执行得更有效率。
2.《Python Cookbook》
又是一本大部头著作,图灵的书真的挺好,缺点就是太厚了。cookbook类的书呢,大体遵循的规律是,面对那一个一个具体的问题,我们该怎么办。有点类似QA,实操性拉满。这本书还把不同的问题给你分门别类了,查起来挺方便。看过后对于代码质量的提升,很有帮助。
就业篇
在就业篇里就需要分方向了。就业通常只学习python语法是不够的,还得掌握具体的学科知识。
1.web方向
(1)《Flask Web开发》
公司如果用python做web大多是初创的,大多用了flask,因为flask是一个小而美的框架,积累了大量第三方库,值得一学。
(2)《精通Django 3 Web开发》
2.人工智能方向
(1)《深度学习》
深度学习挺有名的书,理论深度足够。俗称“花书”。
(2)《利用Python进行数据分析》
用python做数据分析就得读这本。
读书破万卷,下笔如有神。这句古话说来是有道理的。学python推荐这些书籍,大家也可以先多去看看,这样对自己接下来的深入学习是十分有帮助的。
学python推荐的10本豆瓣高分书单,小白到大佬,没看过太可惜了
前言:我自己整理了几本书籍的电子档,需要的可以私信我 “书籍” 免费领取
本书一共12章,每一章都会用一个完整的 游戏 来演示其中的关键知识点,并通过编写好玩的小软件这种方式来学习编程,引发读者的兴趣,降低学习的难度。每章最后都会对该章的知识点进行小结,还会给出一些小练习让读者试试身手。作者很巧妙的将所有编程知识嵌入到了这些例子中,真正做到了寓教于乐。
《Python编程初学者指南》内容浅显易懂,示例轻松活泼,是国际畅销的Python初学者教程,适合对Python感兴趣的初级和中级读者。
二,Python编程快速上手
本书是一本面向实践的Python编程实用指南。这本书不仅是介绍Python语言的基础知识,而且还通过项目实践教会读者如何应用这些知识和技能。 书的首部分介绍了基本Python编程概念,第二部分介绍了一些不同的任务,通过编写Python程序,可以让计算机自动完成它们。第二部分的每一章都有一些项目程序,供读者学习。每章的末尾还提供了一些习题和深入的实践项目,帮助读者巩固所学的知识。附录部分提供了所有习题的解答。
本书适合缺乏编程基础的初学者。通过阅读本书,读者将能利用强大的编程语言和工具,并且会体会到Python编程的快乐。
三,Python编程快速上手(第2版)
在本书中,你将学习利用Python编程在几分钟内完成手动需要几小时的工作,无须事先具备编程经验。通过阅读本书,你会学习Python的基本知识, 探索 Python丰富的模块库,并完成特定的任务(例如,从网站抓取数据,读取PDF和Word文档等)。本书还包括有关输入验证的实现方法,以及自动更新CSV文件的技巧。一旦掌握了编程的基础知识,你就可以毫不费力地创建Python程序,自动化地完成很多繁琐的工作,包括:
① 在一个文件或多个文件中搜索并保存同类文本;
② 创建、更新、移动和重命名成百上千个文件和文件夹;
③ 下载搜索结果和处理Web在线内容;
④ 快速地批量化处理电子表格;
⑤ 拆分、合并PDF文件,以及为其加水印和加密;
⑥ 向特定人群发送提醒邮件和文本通知;
⑦ 同时裁剪、调整、编辑成千上万张图片。
四,Python编程
本书是一本针对所有层次的Python 读者而作的Python 入门书。全书分两部分:第一部分介绍用Python 编程所必须了解的基本概念,包括matplotlib、NumPy 和Pygal 等强大的Python 库和工具介绍,以及列表、字典、if 语句、类、文件与异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D 游戏 开发如何利用数据生成交互式的信息图,以及创建和定制简单的Web 应用,并帮读者解决常见编程问题和困惑。
五,Python编程(第2版)
本书是针对所有层次Python读者而作的Python入门书。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念,包括Matplotlib等强大的Python库和工具,以及列表、字典、if语句、类、文件与异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D 游戏 、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。
第2版进行了全面修订,简化了Python安装流程,新增了f字符串、get()方法等内容,并且在项目中使用了Plotly库以及新版本的Django和Bootstrap,等等。
六,Python深度学习
本书由Keras之父、现任Google人工智能研究员的弗朗索瓦?肖莱(Fran?ois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的 探索 实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。
七,Python极客项目编程
本书包含了一组富有想象力的编程项目,它们将引导你用Python 来制作图像和音乐、模拟现实世界的现象,并与Arduino 和树莓派这样的硬件进行交互。你将学习使用常见的Python 工具和库,如numpy、matplotlib 和pygame等等。
八,Python神经网络编程
本书揭示神经网络背后的概念,并介绍如何通过Python实现神经网络。全书分为3章和两个附录。第1章介绍了神经网络中所用到的数学思想。第2章介绍使用Python实现神经网络,识别手写数字,并测试神经网络的性能。第3章带领读者进一步了解简单的神经网络,观察已受训练的神经网络内部,尝试进一步改善神经网络的性能,并加深对相关知识的理解。附录分别介绍了所需的微积分知和树莓派知识。
本书适合想要从事神经网络研究和 探索 的读者学习参考,也适合对人工智能、机器学习和深度学习等相关领域感兴趣的读者阅读。
九,趣学ython编程
《趣学python编程》是一本轻松、快速掌握python编程的入门读物。全书分为3部分,共18章。第1部分是第1章到第12章,介绍python编程基础知识,包括python的安装和配置、变量、字符串、列表、元组和字典、条件语句、循环语句函数和模块、类、内建函数和绘图,等等。第2部分是第13章和第14章,介绍如何用python开发实例 游戏 弹球。第3部分包括第15章到第18章,介绍了火柴人实例 游戏 的开发过程。
这本书语言轻松,通俗易懂,讲解由浅入深,力求将读者阅读和学习的难度降到最低。任何对计算机编程有兴趣的人或者首次接触编程的人,不论孩子还是成人,都可以通过阅读本书来学习python编程。
十,Python网络编程(第3版)
本书针对想要深入理解使用Python来解决网络相关问题或是构建网络应用程序的技术人员,结合实例讲解了网络协议、网络数据及错误、电子邮件、服务器架构和HTTP及Web应用程序等经典话题。具体内容包括:全面介绍Python3中最新提供的SSL支持,异步I/O循环的编写,用Flask框架在Python代码中配置URL,跨站脚本以及跨站请求伪造攻击网站的原理及保护方法,等等。
学python看什么书
Python 从入门到精通推荐看的书籍:
基础篇:
1.《笨方法学Python》。《笨方法学Python》的英文版,最初的几章有点枯燥,但如果把书里面所有代码都敲一遍,确实能够把基础打好。
2.《Python学习手册》。
这种外国人写的书,都有共同的特点,特别详细,每个知识点给你解释透透的,看的时候可以当作一个字典来翻,这本书确实是面向初学者的。
进阶篇:
1.《流畅的python》。
这本书的作者水平有点高,洋洋洒洒写了这么厚一本,关键是读的时候啊,感觉到处都有收获。前面几章是关于数据结构的,用上合适的数据结构,可以让代码更简洁,也可以让代码执行得更有效率。
2.《Python Cookbook》。
又是一本大部头著作,图灵的书真的挺好,缺点就是太厚了。cookbook类的书呢,大体遵循的规律是,面对那一个一个具体的问题,我们该怎么办。有点类似QA,实操性拉满。这本书还把不同的问题给你分门别类了,查起来挺方便。看过后对于代码质量的提升,很有帮助。
就业篇:
在就业篇里就需要分方向了。就业通常只学习python语法是不够的,还得掌握具体的学科知识。
1.web方向:
(1)《Flask Web开发》。
公司如果用python做web大多是初创的,大多用了flask,因为flask是一个小而美的框架,积累了大量第三方库,值得一学。
(2)《精通Django 3 Web开发》。
2.人工智能方向:
(1)《深度学习》。
深度学习挺有名的书,理论深度足够。俗称“花书”。
(2)《利用Python进行数据分析》。
用python做数据分析就得读这本。