python运行慢怎么解决(python运行慢的原因)
pythonprocess多核更慢
可能出现 Python 进程在多核处理器上运行更慢的情况,这可能是因为在使用多核时会存在一些额外的开销,例如进程之间的通信、数历渗哗据复制等。在单核处理器上运行的情况下,这些额外的开销被隐藏了。此外,如果某些任务的执行时间比较短,Python 在启动多个进程时也需要考虑到进程之间切换时的开销。
为了获得更好的性能并使用多核处理器,可以尝试以下解决方案:
1. 使用并行处理库,例如 multiprocessing 和 concurrent.futures,可以轻松地开启多个进程同时处理任务。这可以显着提高 Python 进程在多核处理器上的运行速度。
2. 使用 NumPy、pandas 等科学计算库可以发挥多核处理器的优势,因为它们已经实现了各种并行化算法。
3. 尽可能避免使用全局锁肢行,应该使用线程局部数据,这将使得多线程应用程序能够在多核处理器上运行。
4. 尽可能减少进程之间的数据通信,此外,尽量减少数据复制操作。
5. 通过设置进程池,使用进程池可以将所有进程预先建立,这可以显著减少开销,特别是在短时间内运行许多进程的情况下。喊喊
提升Python运行速度的5个小技巧
pre{overflow-x: auto}
Python 是世界上使用最广泛的编程语言之一。它是一种解释型高级通用编程语言,具有广泛的用途,几乎可以将其用于所有事物。其以简单的语法、优雅的代码和丰富的第三方库而闻名。python除了有很多优点外,但在速度上还有一个非常大的缺点。
虽然Python代码运行缓慢,但可以通过下面分享的5个小技巧提升Python运行速度!
首先,定义一个计时函数timeshow,通过简单的装饰,可以打印指定函数的运行时间。
这个函数在下面的例子中会被多次使用。
def?timeshow(func): ????from?time?import?time ????def?newfunc(*arg,?**kw): ????????t1?=?time() ?誉竖斗???????res?=?func(*arg,?**kw) ????????t2?=?time() ????????print(f"{func.__name__:?10}?:?{t2-t1:.6f}?sec") ????????return?res ????return?newfunc @timeshow def?test_it(): ????print("hello?pytip") test_it() 1. 选择合适的数据结构
使用正确的数据结构对python脚本的运行时间有显着影响。Python 有四种内置的数据结构:
列表 : List
元组 : Tuple
集合 : Set
字典 : Dictionary
但是,大多数开发人员在所有情况下都使用列表。这是不正确的做法,应纤凳该根据任务使用合适数据结构。
运行下面的代码,可以看到元组执行简单检索操作的速度比列表快。其中dis模块反汇编了一个函数的字节码,这有利于查看列表和元组之间的区别。
import?dis def?a(): ????data?=?[1,?2,?庆磨3,?4,?5,6,7,8,9,10] ????x?=data[5] ????return?x def?b(): ????data?=?(1,?2,?3,?4,?5,6,7,8,9,10) ????x?=data[5] ????return?x print("-----:使用列表的机器码:------") dis.dis(a) print("-----:使用元组的机器码:------") dis.dis(b)
运行输出:
-----:使用列表的机器码:------
3 0 LOAD_CONST 1 (1)
2 LOAD_CONST 2 (2)
4 LOAD_CONST 3 (3)
6 LOAD_CONST 4 (4)
8 LOAD_CONST 5 (5)
10 LOAD_CONST 6 (6)
12 LOAD_CONST 7 (7)
14 LOAD_CONST 8 (8)
16 LOAD_CONST 9 (9)
18 LOAD_CONST 10 (10)
20 BUILD_LIST 10
22 STORE_FAST 0 (data)
4 24 LOAD_FAST 0 (data)
26 LOAD_CONST 5 (5)
28 BINARY_SUBSCR
30 STORE_FAST 1 (x)
5 32 LOAD_FAST 1 (x)
34 RETURN_VALUE
-----:使用元组的机器码:------
7 0 LOAD_CONST 1 ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
2 STORE_FAST 0 (data)
8 4 LOAD_FAST 0 (data)
6 LOAD_CONST 2 (5)
8 BINARY_SUBSCR
10 STORE_FAST 1 (x)
9 12 LOAD_FAST 1 (x)
14 RETURN_VALUE
看下列表的机器码,冗长而多余!
2. 善用强大的内置函数和第三方库
如果你正在使用python并且仍在自己编写一些通用函数(比如加法、减法),那么是在侮辱python。 Python有大量的库和内置函数来帮助你不用编写这些函数。 如果研究下,那么你会惊奇地发现几乎90%的问题已经有第三方包或内置函数来解决。
可以通过访问官方文档查看所有内置函数。你也可以在wiki python上找到更多使用内置函数的场景。
比如,现在我们想合并列表中的所有单词为一个句子,比较法自己编写和调用库函数的区别:
#???正常人能想到的方法 @timeshow def?f1(list): ????s?="" ????for?substring?in?list: ????????s?+=?substring ????return?s #???pythonic?的方法 @timeshow def?f2(list): ????s?=?"".join(list) ????return?s l?=?["I",?"Love",?"Python"]?*?1000?#?为了看到差异,我们把这个列表放大了 f1(l) f2(l)
运行输出:
f1 : 0.000227 sec
f2 : 0.000031 sec
3. 少用循环
用 列表推导式 代替循环
用 迭代器 代替循环
用 filter() 代替循环
减少循环次数,精确控制,不浪费CPU
##?返回n以内的可以被7整除的所有数字。 #???正常人能想到的方法: @timeshow def?f_loop(n):? ????L=[] ????for?i?in?range(n): ????????if?i?%?7?==0: ????????????L.append(i) ????return?L #????列表推导式 @timeshow def?f_list(n): ????L?=?[i?for?i?in?range(n)?if?i?%?7?==?0] ????return?L #????迭代器 @timeshow def?f_iter(n): ????L?=?(i?for?i?in?range(n)?if?i?%?7?==?0) ????return?L #???过滤器? @timeshow def?f_filter(n): ????L?=?filter(lambda?x:?x?%?7?==?0,?range(n)) ????return?L #???精确控制循环次数? @timeshow def?f_mind(n): ????L?=?(i*7?for?i?in?range(n//7)) ????return?L n?=?1_000_000 f_loop(n) f_list(n) f_iter(n) f_filter(n) f_mind(n)
输出为:
f_loop : 0.083017 sec
f_list : 0.056110 sec
f_iter : 0.000015 sec
f_filter : 0.000003 sec
f_mind : 0.000002 sec
谁快谁慢,一眼便知!
filter 配合 lambda 大法就是屌!!!
4. 避免循环重复计算
如果你有一个迭代器,必须用它的元素做一些耗时计算,比如匹配正则表达式。你应该将正则表达式模式定义在循环之外,因为最好只编译一次模式,而不是在循环的每次迭代中一次又一次地编译它。
只要有可能,就应该尝试在循环外进行尽可能多的运算,比如将函数计算分配给局部变量,然后在函数中使用它。
#???应改避免的方式: @timeshow def?f_more(s): ????import?re ????for?i?in?s: ????????m?=?re.search(r'a*[a-z]?c',?i) #???更好的方式: @timeshow def?f_less(s): ????import?re ????regex?=?re.compile(r'a*[a-z]?c') ????for?i?in?s: ????????m?=?regex.search(i) s?=?["abctestabc"]?*?1_000 f_more(s) f_less(s)
输出为:
f_more : 0.001068 sec
f_less : 0.000365 sec
5. 少用内存、少用全局变量
内存占用是指程序运行时使用的内存量。为了让Python代码运行得更快,应该减少程序的内存使用量,即尽量减少变量或对象的数量。
Python 访问局部变量比全局变量更有效。在有必要之前,应该始终尝试忽略声明全局变量。一个在程序中定义过的全局变量会一直存在,直到整个程序编译完成,所以它一直占据着内存空间。另一方面,局部变量访问更快,且函数完成后即可回收。因此,使用多个局部变量比使用全局变量会更好。
#???应该避免的方式: message?=?"Line1\n" message?+=?"Line2\n" message?+=?"Line3\n" #???更好的方式: l?=?["Line1","Line2","Line3"] message?=?'\n'.join(l) #???应该避免的方式: x?=?5 y?=?6? def?add(): ????return?x+y add() #???更好的方式: def?add(): ????x?=?5 ????y?=?6 ????return?x+y add()
总结
本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注的更多内容!
python 处理大数据程序运行的越来越慢的问题
最近编写并运行了一个处理1500万个数据的程序,本来最初每秒可以处理150个左右的数据,预计大概15个小时的时间就可以处理完,晚上的时候就开始运行,本以为等到第二天中午就可以得到结果呢,,,
可是,等我第二天的时候一看,什么???还没处理完,当前的数据处理速度变成了一秒5个左右,然后还需要等待300个小时。
然后就查了一下这个问题,原来同样也有很多人在处理培察蔽大数据的时候遇到了这个问题,大多数的文章分析的原因都是说由于GC(垃圾回收)造成的性能下降。
Python的垃圾回收机制的工作原理为每个对象维护一个引用计数,每次内存对象的创建与销毁都必须修改引用计数,从而在大量的对象创建时,需要大量的执行修改引用计数操作,对于程序执行过程中,额外的性能开销是令人可怕的。回收的触发时机有两种可能,一是用户主动调用gc.collect(),二是对象数量超过阈值。
所以正是GC拖慢了程序的性能,所以我们可以考虑在处理的时候禁止垃圾回收。
通过这样的改进之后速度确度会有很大的提升。但是又有也会另外的一个问题,内存溢出,由于运行的过程中生成大量的对象,一次使用后就没有了引用,由于关闭了垃圾回收机制,一直存在内存中得不到清理,然后程序的内存使用量越来越大。解决的方法就是定期打开gc.enable()再关配州闭或者主动调用gc.collect(),这样就可以了。
通过上述的改进后程序确实了很多,可是我的程序还是运行的越来越慢,我都怀疑人生了,然后分别测试了各个步骤所花费的时间才知道了原因,我使用了pandas创建一个DataFrame,然后每次迭代得到的结果都添加新的数据到DataFrame中,随着里边的数据越来越多,添加的速度也就越来越慢了,严重的拖累的运行速度。这里的解决方法有两个:
1 分段保存结果,间隔一段时间就保存一次结果,最后再将多次的结果合并。
2 换一个数据存储方法,我是直接使用了python的没和字典进行保存结果,它随着数据的增多添加的速度也会变慢,但是差别不是很大,在可接受的范围内,可以使用;或者再加上方法1,分段进行保存再合并也是可以的。
python运行速度慢怎么办
yxhtest7772017-07-18
关注
?分享
??697??????2
python运行速度慢怎么办?6个Python性能优化技巧
?
Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务卜谈和多重处理。
Python的批评者声称Python性能低效、执行缓慢,但实际上并非如型凳碰此:尝试以下6个小技巧,可以加快Python应用程序。
关键代码可以依赖于扩展包
Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。
下面这些扩展包你可以考虑添加到你的个人扩展库中:
Cython
PyInlne
PyPy
Pyrex
这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。
使用关键字排序
有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。
优化循环
每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运粗樱行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。
使用新版本
任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。
当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是