网站数据分析:网站内容的关联推荐营销(2)
基于用户行为分析的关联推荐
所以个人更偏向于基于用户分析的实现方式,这样更有利于发现用户的潜在需求,帮助用户更好的选择它们需要的产品,并由用户决定是否购买,也就是所谓的“拉式”营销。通过向用户推荐产品或服务,激发用户的潜在需求,促使用户消费,更加符合“以用户为中心”的理念。所以下面主要简单描述下以用户行为分析为基础的关联推荐,无论你是电子商务网站或是其他任何类型的网站,其实都可以实现这个功能,只要你具备以下前提:
1.能够有效地识别网站用户;
2.保留了用户的历史行为数据(点击流数据(clickstream)或运营数据(outcomes));
3.当然还需要一个不错的网站数据分析师。
这里以电子商务网站为例来说明一下关联规则的具体实现。目前大部分电子商务网站都提供用户注册的功能,而购物的用户一般都是基于登录的条件下完成的,所以这里为用户识别提供了最为有效的标示符——用户ID(关于用户识别的方法,请参考这篇文章——网站用户的识别);同时网站会把所有用户的购物数据储存在自己的运营数据库里面,这个为用户行为分析提供了数据基础——用户历史购物数据。所以满足了上述的前两个条件,我们就可以着手进行分析了。
关联规则的实现原理是从所有的用户购物数据中(如果数据量过大,可以选取一定的时间区间,如一年、一个季度等),寻找当用户购买了A商品的基础上,又购买了B商品的人数所占的比例,当这个比例达到了预设的一个目标水平的时候,我们就认为这两个商品是存在一定关联的,所以当用户购买了A商品但还未购买B商品时,我们就可以向该类用户推荐B商品。如下图:
从上图可以看到其中牵涉3个集合:所有购买过商品的用户全集U、购买了A商品的用户集合A以及在购买了A商品之后又购买了B商品的用户集合G。基于这3个集合可以计算关联规则挖掘中的2个关键指标——支持度(Support)和置信度(Confidence):
支持度=购买了A和B商品(集合G)的人数/所有购买过商品(集合U)的人数
置信度=购买了A和B商品(集合G)的人数/购买了A商品(集合A)的人数
得到这两个指标之后,需要为这两个指标设立一个最低门槛,即最小支持度和最小置信度。因为在用户的购买行为中,购买A商品的用户可能不仅购买B商品,还购买了C、D、E……等一系列商品,所以我们需要分别算出所有这些组合的支持度和置信度,只有满足比如支持度》0.2,置信度》0.6的这些商品组合才可以认为是有关联的,值得推荐的。
当然,如果你的网站不是电子商务网站,你同样可以用用户浏览网站的点击流数据实现关联推荐的功能。同样是基于用户历史行为,比如浏览了A页面的用户也浏览的B页面、观看了A视频的用户也观看了B视频、下载了A文件的用户也下载了B文件……
数据挖掘中的关联规则挖掘一般采用基于频繁集的Apriori算法,是一个较为简单有效的算法,这里就不具体介绍了,有兴趣的朋友可以去查下资料。
在进行关联规则分析时需要注意的一些问题
1.注意关联推荐的适用范围和前提条件,并不是每一类网站都适合或需要进行关联推荐的;
2.最小支持度和最小执行度的设立需要根据网站运营的特征设定,不宜偏高或偏低,建议基于实验或实践的基础上不断优化,寻找一个最佳的权衡点。
3.需要特别注意的是,在关联规则中A商品与B商品有关联,并不意味着B商品与A商品的关联也成立,因为两者的置信度算法是不同的,关联方向不可逆。
4.关联规则分析在算法上其实并不难,但是要将其在网站上真正实现好,在满足上面3个前提的基础上还需要持续地优化算法,而更主要的是需要网站各部门的协作实现。
所以,基于用户行为分析的关联推荐完全从用户的角度进行分析,比单纯地比较产品间的关联更为深入和有效,更加符合用户的行为习惯,有利于发现用户的潜在需求,不妨尝试一下。