python开发流程有(python开发bi)
python后端开发需要学什么?
可以参考下面的路径去学习,祝你学有所成,公司最近在人工智能和自然语言处理的项目后端项目,我也是网上找了很多知识,最后给自己列了一个学习的目录,按照这个在复习并在总结,希望能帮到你:
计算机基本认知,环境搭建 ? ?python环境搭建
计算机基本认识,进制转换
python注释使用
python变量使用
python数据类型_Number
python数据类型 ? ?str字符串类型
容器类型数据list,tuple,str
容器类型数据set,dict
变量缓存机制
自动类型转换
Number强制类型转换 ?
python运算符的使用 ? ?容器类型数据强制类型转换
字典强转等长二级容器
运算符_算数_比较
运算符_赋值_成员
运算符_身份_逻辑
运算符_位运算_优先级 ?
python流程控制 ? ?代码块
流程控制if
多项巢状分支
循环结构while
循环判断经典题
字符串的相关操作 ?
python循环结构? ??
关键字continue_break_pass
for循环的遍历_range ?
字符串,列表内置方法? ??
字符串函数
format字符串格式化
format特殊符号的使用
列表的操作
列表函数 ?
字典,集合内置方法+文件操作? ??
字典的相关函数
集合操作_函数
文件操作
文件加号模式 ?
函数,函数参数 ? ?文件相关函数?
函数
形参实参
默认形参_关键字形参
收集参数
命名关键字参数
全局/局部变量,闭包 ? ?return返回值
函数名的使用
局部变量_全局变量
函数的嵌套LEGB
关键字nonlocal
闭包函数 ?
递归,匿名函数? ??
locals和globals
闭包特点意义
递归含义
斐波那契_尾递归
匿名函数lambda ?
迭代器,高阶函数 ? ?迭代器
高阶函数_map
高阶函数_reduce
高阶函数_sorted
高阶函数_filter ?
推导式 ? ?列表推导式
推导式题
集合_字典推导式
生成器表达式
生成器函数 ?
内置方法,linux基本命令 ? ?内置函数
可滑动序列
面试题演练
linux安装
linux基本命令 ?
python模块 ? ?序列化模块
数学模块
随机模块
time模块 ?
python模块 ? ?os模块
os_shutil
os.path模块
计算文件夹大小
zipfile
tarfile ?
导入模块包,oop面向对象认知? ??
import_from绝对导入
import_from相对导入(单入口)
oop面向对象
类的封装性
oop之封装,继承 ? ?类的相关操作
对象和类的删除操作
单继承
多继承
菱形继承
oop之多态,魔术方法 ? ?多态
魔术方法__new__
单态模式
析构方法__del__ ?
oop之魔术方法,异常处理 ? ?魔术方法__call__
魔术方法__str__repr__
魔术方法__bool_add_len__
了解异常
异常处理语法
主动抛出异常
装饰器 ?
装饰器
静态绑定方法
property?
正则表达式 ? ?单个字符匹配
多个字符匹配
匹配分组
命名分组
正则函数
正则计算器小程序
认识网络 ? ?bs_cs流程
传输数据流程
交换机和局域网的网络通讯
arp协议 ?
认识tcp/udp协议 ?
tcp基本语法
tcp循环发消息
udp基本语法
udp循环发消息
黏包 ?
基于tcp协议下的应用 ? ?socketserver并发
文件校验
服务器合法性校验
tcp登录
并发编程之进程 ? ?进程
join
守护进程
lock锁
Semaphore
生产者消费者模型 ? ?Event事件
进程队列Queue
生产者和消费者模型
JoinableQueue
Manager.py
并发编程之线程
.线程
用类定义线程
守护线程
lock保证线程数据安全
信号量_Semaphore
死锁,互斥锁,递归锁
线程池,进程池,协成的使用
事件Event
线程队列
进程池和线程池
回调函数
协程
协程的爬虫案例
mysql安装(linux+windows+xshell+navicat) ?
掌握数据库mysql基本操作
mysql登录,服务启动
创建账户,用户授权
数据库,数据表,数据的增删改查
认识常用数据类型 ?
数据库的存储引擎和约束 ?
字段约束
约束的删减
存储引擎区别用法
数据表之间的关系 ?
查询数据表 ?
单表查询
多表联查
子查询
带EXISTS关键字的子查询
python操作mysql ?
python连接mysql的事务处理
sql注入
python连接mysql增删改查
mysql数据恢复 ?
HTML/CSS? ? html文档介绍,html标签,body标签,head标签介绍,head标签中的meta标签和link标签和title标签介绍,body中的标签分类,基础标签,img、a、列表、表格、input、label、select等标签,作业讲解,form标签介绍和示例讲解,css介绍,引入,css选择器,背景设置,高度宽度,字体效果,边框、盒子模型、display属性、float属性等 ?
CSS ? ?伪类选择器,文字装饰、a标签补充、定位、权重、小米商城导航栏讲解,原型头像示例讲解 ?
JS基础/BOM和DOM操作 ? ?小米商城作业,js介绍和js引入,js数据类型、流程控制、函数等操作,js中的JSON,BOM对象的弹框、location对象、定时器、直接查找选择器、间接查找选择器、值操作、类值操作、样式操作、button按钮补充、事件和绑定事件的两种方式,常用事件练习 ?
jQuery/Bootstrap ? ?作业讲解,jquery介绍,引入、选择器、筛选器、值操作、文档操作、删除和清空标签、逻辑运算符、克隆、事件冒泡和事件委托、绑定事件的方式,作业讲解和模态对话框示例,input事件和页面载入事件补充、bootstrap介绍和引入、全局css样式、组件和常用插件
自定义web框架 ? ?作业讲解、web框架介绍、自定义web框架实现、动态页面、返回不同的html页面、函数版、多线程版、返回静态文件版,wsgiref版等web框架通过socket来实现,还有jinja2的简单使用 ?
django下载安装和URL路由系统 ? ?django介绍、MTV和MVC框架介绍、常用指令、目录结构、pycharm创建django项目、request的常用属性介绍、登录示例、url路由系统介绍、有名分组和无名分组, ?
视图/模板 ? ?request对象的常用方法和属性、响应方法介绍和使用,CBV和FBV、CBV和FBV加装饰器,CBV源码讲解,模板渲染系统介绍,语法、简单示例、内置过滤器、for循环标签、if标签、with标签、自定义过滤器和标签、模板继承等 ?
Dajngo的ORM(1) ? ?orm介绍,数据库同步指令使用和流程分析、配置连接mysql模型类中的属性介绍和常用参数说明,创建表和数据、增加的两种方法、删除、更新的两种方法、查询的13个api接口 ?
Dajngo的ORM(2) ? ?单表图书管理系统展示和添加作业讲解、choices属性、auto_now_add和auto_now参数讲解、url别名和反向解析,基于双下划线的模糊查询,多表结构介绍,图书管理系统编辑和删除作业讲解、多表关系模型类创建和字段说明和参数介绍、多表数据的添加操作,多表的删除和修改、基于对象的跨表查询、双下划线跨表查询、查看原生sql语句的方法、聚合查询、分组查询、F查询、Q查询等 ?
Ajax与Django/ 中间件 ? ?ajax的介绍和简单示例,ajax登录示例、列表数据展示示例,ajax操作cookie的补充、中间件介绍、自定义中间件的方法、5个中间件方法的介绍和使用、基于中间件的session登录认证?
cookie、session以及用户认证组件 ? ?cookie介绍,cookie的流程解析,django操作cookie和其他参数介绍、session的说明、django的session操作等,多表图书管理系统作业讲解 ?
vue初识、es6基本语法、指令系统 ? ?let、const、v-if、v-for、v-html、v-text、v-model、v-show、生命周期钩子函数、 ?
组件化开发、组件传值、axios简单使用 ? ?组件化开发、组件传值、axios简单使用、vue-router使用、vue-cli安装 ?
项目初始化/首页 ? ?项目介绍、创建、初始化、element-ui的使用,单文件组件的使用和axios在单文件中的使用和配置、vue-cli的介绍和使用、路飞项目顶部导航栏页面效果搭建,轮播图组件的使用和调整、购物车页面搭建和课程详情页面搭建,vue-video-player视频播放插件 ?
drf组件 ? ?序列化器、drf简单示例、restful规范、反序列化的校验机制 ?
drf组件 ? ?apiview、request和response对象、modelserializer、序列化器保存数据、read_only和write_only的参数 ?
drf组件 ? ?viewset、drf路由功能、viewset视图基类的使用、视图子类、通用视图类genericapiview/排序、django-filter过滤器、频率组件、分页组件、接口文档、异常处理、xadmin的安装和使用、认证组件和权限组件 ?
git、消息队列 ? ?git企业中的使用模式,rabbimq消息队列的应用 ?
rpc通信,grpc组件 ? ?rpc的概念以及通信模式,最火的grpc组件使用?
轻量级Flask框架 ? ?Werkzeug服务介绍、Flask框架介绍 ?
路由系统、自定义路由扩展 ?
Cookie、Session、Http请求和响应 ?
蓝图、消息闪现、中间件 ?
Flask常用扩展、WTForms、使用SQLAchemy ORM ?
Admin、Restful、websocket原理、magic string, payload len,masking key? ?
请求和上下文、多app应用、离线脚本、自定义扩展?
服务端项目搭建,项目配置(session、数据库、日志相关),项目初始化 ?
jsonrpc模块基本配置和使用,客户端展示首页及登录注册叶绵,APICloud页面控制管理
python进阶 ? ?并发、同步、异步、锁,线进程概念以及协程实现原理 ?
mysql进阶课 ? ?基础知识梳理、索引、执行计划 ?
mysql进阶课 ? ?存储引擎、日志管理、备份恢复、主从赋值、优化 ?
redis,mongodb ? ?事务和发布订阅、RDB和AOF持久化、缓存击穿、缓存雪崩等原理介绍、 用户管理和复制集(RS)总结、sharding cluster 分片集群的搭建、分片使用和相关策略等 ?
算法与设计模式 ? ?链表、二叉树、常见算法、二分查找、插入排序、希尔排序、快排、堆排序、哈希查找 ?
算法与设计模式 ? ?设计模式,单例模式、工厂模式、策略模式、观察者模式 ?
算法与设计模式 ? ?leetcode经典算法解析 ?
知识体系差不多就这么多了,再就是项目部分,具体项目要看需求了,学会了钓鱼的方法,不怕钓不到鱼哦,无论在哪个行业做什么样的项目都没问题呢!
我自己也搜集了一些经典的资料,要是想要加我百度网盘:艾美电商,我发给你!
python是如何被开发的?
本文出自《Python高手之路》中的Doug Hellmann访谈。
我曾经有幸和Doug Hellmann一起工作过数月。他在DreamHost是一位非常资深的软件开发工程师,同时他也是OpenStack项目的贡献者。他发起过关于Python的网站Python Module of the Week(),也出版过一本很有名的Pyhton书The Python Standard Library By Example(),同时他也是Python的核心开发人员。我曾经咨询过Doug关于标准库以及库的设计与应用等方面的问题。
当你从头开发一个Python应用时,如何迈出第一步呢?它和开发一个已有的应用程序有什么不同?
从抽象角度看步骤都差不多,但是细节上有所不同。相对于对比开发新项目和已有项目,我个人在对应用程序和库开发的处理方式上有更多的不同。
当我要修改已有代码时,特别是这些代码是其他人创建的时,起初我需要研究代码是如何工作的,我需要改进哪些代码。我可能会添加日志或是输出语句,或是用pdb,利用测试数据运行应用程序,以便我理解它是如何工作的。我经常会做一些修改并测试它们,并在每次提交代码前添加可能的自动化测试。
创建一个新应用时,我会采取相同的逐步探索方法。我先创建一些代码,然后手动运行它们,在这个功能可以基本调通后,再编写测试用例确保我已经覆盖了所有的边界情况。创建测试用例也可以让代码重构更容易。
这正是smiley()的情况。在开发正式应用程序前,我先尝试用Python的trace API写一些临时脚本。对于smiley我最初的设想包括一个仪表盘并从另一个运行的应用程序收集数据,另一部分用来接收通过网络发送过来的数据并将其保存。在添加几个不同的报告功能的过程中,我意识到重放已收集的数据的过程和在一开始收集数据的过程基本是一样的。于是我重构了一些类,并针对数据收集,数据库访问和报告生成器创建了基类。通过让这些类遵循同样的API使我可以很容易地创建数据收集应用的一个版本,它可以直接将数据写入数据库而无需通过网络发送数据。
当设计一个应用程序时,我会考虑用户界面是如何工作的,但对于库,我会专注于开发人员如何使用其API。通过先写测试代码而不是库代码,可以让思考如何通过这个新库开发应用程序变得更容易一点儿。我通常会以测试的方式创建一系列示例程序,然后依照其工作方式去构建这个库。
我还发现,在写任何库的代码之前先写文档让我可以全面考虑功能和流程的使用,而不需要提交任何实现的细节。它还让我可以记录对于设计我所做出的选择,以便读者不仅可以理解如何使用这个库,还可以了解在创建它时我的期望是什么。这就是我用在stevedore上的方法。
我知道我想让stevedore能够提供一组类用来管理应用程序的插件。在设计阶段,我花了些时间思考我见过的使用插件的通用模式,并且写了几页粗略的文档描述这些类应该如何使用。我意识到,如果我在类的构造函数中放最复杂的参数,方法map()几乎是可互换的。这些设计笔记直接写进了stevedore官方文档的简介里,用来解释在应用程序中使用插件的不同模式和准则。
将一个模块加入Python标准库的流程是什么?
完整的流程和规范可以在Python Developer's Guide()中找到。
一个模块在被加入Python标准库之前,需要被证明是稳定且广泛使用的。模块需要提供的功能要么是很难正确实现的,要么是非常有用以至于许多开发人员已经创建了他们自己不同的变种。API应该非常清晰并且它的实现不能依赖任何标准库之外的库。
提议一个新模块的第一步是在社区通过python-ideas邮件列表非正式地了解一下大家对此的感兴趣程度。如果回应很积极,下一步就是创建一个Python增强提案(PythonEnhancement Proposal,PEP),它包括添加这个模块的动因,以及如何过渡的一些实现细节。
因为包的管理和发现工作已经非常稳定了,尤其是pip和Python Package Index(PyPI),因此在标准库之外维护一个新的库可能更实用。单独的发布使得对于新功能和bug修复(bugfix)的更新可以更频繁,对于处理新技术或API的库来说这尤其重要。
标准库中的哪三个模块是你最想人们深入了解并开始使用的?
最近我做了许多关于应用程序中动态加载扩展方面的工作。我使用abc模块为那些作为抽象基类进行的扩展定义API,以帮助扩展的作者们了解API的哪些方法是必需的,哪些是可选的。抽象基类已经在其他一些语言中内置了,但我发现很多Python程序员并不知道Python也有。
bisect模块中的二分查找算法是个很好的例子,一个广泛使用但不容易正确实现的功能,因此它非常适合放到标准库中。我特别喜欢它可以搜索稀疏列表,且搜索的值可能并不在其中。
collections模块中有许多有用的数据结构并没有得到广泛使用。我喜欢用namedtuple来创建一些小的像类一样的数据结构来保存数据但并不需要任何关联逻辑。如果之后需要添加逻辑的话,可以很容易将namedtuple转换成一个普通的类,因为namedtuple支持通过名字访问属性。另一个有意思的数据结构是ChainMap,它可以生成良好的层级命名空间。ChainMap能够用来为模板解析创建上下文或者通过清晰的流程定义来管理不同来源的配置。
许多项目(包括OpenStack)或者外部库,会在标准库之上封装一层自己的抽象。例如,我特别想了解对于日期/时间的处理。对此你有什么建议吗?程序员应该坚持使用标准库,还是应该写他们自己的函数,切换到其他外部库或是开始给Python提交补丁?
所有这些都可以。我倾向于避免重复造轮子,所以我强烈主张贡献补丁和改进那些能够用来作为依赖的项目。但是,有时创建另外的抽象并单独维护代码也是合理的,不管在应用程序内还是作为一个新的库。
你提到的例子中,OpenStack里的timeutils模块就是对Python的datetime模块的一层很薄的封装。大部分功能都简短且简单,但通过将这些最常见的操作封装为一个模块,我们可以保证它们在OpenStack项目中以一致的方式进行处理。因为许多函数都是应用相关的,某种意义上它们强化了一些问题决策,例如,字符串时间戳格式或者“现在”意味着什么,它们不太适合作为Python标准库的补丁或者作为一个通用库发布以及被其他项目采用。
与之相反,我目前正致力于将OpenStack的API服务项目从早期创建时使用的WSGI框架转成采用一个第三方Web开发框架。在Python中开发WSGI应用有很多选择,并且当我们可能需要增强其中一个以便其可以完全适应OpenStack API服务器的需要时,将这些可重用的修改贡献对于维护一个“私有的”框架似乎更可取。
当从标准库或其他地方导入并使用大量模块时,关于该做什么你有什么特别的建议吗?
我没有什么硬性限制,但是如果我有过多的导入时,我会重新考虑这个模块的设计并考虑将其拆到一个包中。与上层模块或者应用程序模块相比,对底层模块的这种拆分可能会发生得更快,因为对于上层模块我期望将更多片段组织在一起。
关于Python 3,有什么模块是值得一提而且能令开发人员有兴趣深入了解的?
支持Python 3的第三方库的数量已经到了决定性的时刻。针对Python 3开发新库或应用程序从未如此简单过,而且幸亏有3.3中加入的兼容性功能使同时维护对Python 2.7的支持也很容易。主要的Linux发行版正在致力于将Python 3默认安装。任何人要用Python创建新项目都应该认真考虑对Python 3的支持,除非有尚未移植的依赖。目前来说,不能运行在Python 3上的库基本会被视为“不再维护”。
许多开发人员将所有的代码都写入到应用程序中,但有些情况下可能有必要将代码封装成一个库。关于设计、规划、迁移等,做这些最好的方式是什么?
应用程序就是“胶水代码”的集合用来将库组织在一起完成特定目的。起初设计时可以将这些功能实现为一个库,然后在构建应用程序时确保库的代码能够很好地组织到逻辑单元中,这会让测试变得更简单。这还意味着应用程序的功能可以通过库进行访问,并且能够被重新组合以构建其他应用程序。未能采用这种方法的话意味着应用程序的功能和用户界面的绑定过于紧密,导致很难修改和重用。
对于计划开始构建自己的Python库的人们有什么样的建议呢?
我通常建议自顶向下设计库和API,对每一层应用单一职责原则(Single Responsibility Principle,SRP)()这样的设计准则。考虑调用者如何使用这个库,并创建一个API去支持这些功能。考虑什么值可以存在一个实例中被方法使用,以及每个方法每次都要传入哪些值。最后,考虑实现以及是否底层的代码的组织应该不同于公共API。
SQLAlchemy是应用这些原则的绝好例子。声明式ORM、数据映射和表达式生成层都是单独的。开发人员可以自行决定对于API访问的正确的抽象程度,并基于他们的需求而不是被库的设计强加的约束去使用这个库。
当你随机看Python程序员的代码时遇到的最常见的编程错误是什么?
Python的习惯用法和其他语言的一个较大的不同在于循环和迭代。例如,我见过的最常见的反模式是使用for循环过滤一个列表并将元素加入到一个新的列表中,然后再在第二个循环中处理这个结果(可能将列表作为参数传给一个函数)。我通常建议将过滤循环改成生成器表达式,因为生成器表达式,更有效也更容易理解。列表的组合也很常见,以便它们的内容可以以某种方式一起被处理,但却没有使用itertools.chain()。
还有一些我在代码评审时给出的更细小的建议,例如,使用dict()而不是长的if:then:else块作为查找表,确保函数总是返回相同的类型(如一个空列表而不是None),通过使用元组和新类将相关的值合并到一个对象中从而减少函数的参数,以及在公共API中定义要使用的类而不是依赖于字典。
有没有关于选择了一个“错误”的依赖的具体的例子是你亲身经历或目睹过的?
最近,我有个例子,pyparsing()的一个新发布取消了对Python 2的支持,这给我正在维护的一个库带来了一点儿小麻烦。对pyparsing的更新是个重大的修改,而且是明确标识成这样的,但是因为我没有在对cliff()的设置中限制依赖版本号,所以pyparsing的新发布给cliff的用户造成了问题。解决方案就是在cliff的依赖列表中对Python 2和Python 3提供不同的版本边界。这种情况突显了理解依赖管理和确保持续集成测试中适当的测试配置的重要性。
你怎么看待框架?
框架像任何工具类型一样。它们确实有帮助,但在选择框架时要特别谨慎,应确保它能够很好地完成当前的工作。
通过抽取公共部分到一个框架中,你可以将你的开发精力专注于应用中独特的方面。通过提供许多类似运行在开发模式或者写一个测试套件这样的引导代码,它们还可以帮你让一个应用程序迅速达到一个可用的状态而不是从头开发。它们还可以激励你在应用程序开发过程中保持一致,这意味着最终你的代码将更易于理解且更可重用。
虽然使用框架时还有其他一些潜在的缺点需要注意。决定使用某个特定框架通常能够反映应用程序本身的设计。如果设计的限制不能从根本上符合应用程序的需求,那么选择错误的框架会令应用的实现变得更难。如果你试着使用与框架建议不同的模式或惯用方式,你最终将不得不同框架做斗争。
零基础的人如何学习python开发?
python零基础怎么学?如果是纯新手,建议找个老师教,在掌握了基本的要点以后,可以在网上找些例程研究学习。不论是找老师教,还是自学,建议掌握以下一些知识点:
1、编程环境的安装和使用
2、输入输出语句、变量、表达式的理解和使用
3、选择结构、循环结构的理解和使用
4、列表的使用
5、文件的操作
6、函数调用的方法
7、库的安装和使用