Python爬虫爬取数据的局限性(python爬虫内容)
python爬虫爬取不出信息
Python爬虫程序本身没有问题,但是却爬取不了数据主要原因如下:
1.对方有反爬程序
几乎所网站为了防止一些恶意抓取,会设置反爬程序,你会发现明明很多数据显示在浏览器上,但是却抓取不出来。
2.伪装方式没有绕过目标网站反爬
网站都有反爬虫机制,防止爬取数据,爬虫想要爬取数据,就需要隐藏自身的身份,伪装成用户的身份进行访问,如果没有伪装好,被检测到爬虫,也是被会限制的。比如请求头没有设置好,Cookie问题等等。
3.IP被限制
爬虫除了IP所有数据都可以伪装,当你的IP访问次数过多之后,就会被限制住,再也无法访问了。这个时候就需要带入ip代理池了。
用Python 写爬虫时应该注意哪些坑
1. 爬个别特定网站,不一定得用python写爬虫,多数情况wget一条命令多数网站就能爬的不错,真的玩到自己写爬虫了,最终遇到的无非是如何做大做壮,怎么做分布式爬虫。scrapy这种价值接近0,异步或者多线程搞抓取,选一个成熟的基于磁盘的队列库,kafka之类的,scrapy帮了啥看
2. http库众多,还有gevent库monkey patch以后coroutine的玩这一选择,规模千万的话urllib3很好。
3. 对付网站的诸如登录、ajax,这种不过是体力民工活,不展开了。
4. 速度很重要,放ec2或者国内的云上跑,很重要的指标是你每一亿网页爬下来成本多少,爬的时候比如4核一个虚拟机节点,你能inbound用足100mbps吗。
5. beautifulsoup太慢,全网的爬,encoding的分析也要要快,c实现的chardet还行
最关键的,永远是爬下来以后的信息的提取、分析、使用,就是另外一个话题了。
1.学会使用chrome浏览器查看通信以及查看元素格式
2.增加User-Agent, 这是最简单的反爬措施了
3.写爬虫最好使用Ipython,在交互式的环境下,可以时刻了解自己问题具体出在哪里
4.使用requests
5.用get或者post下好html之后,要确认你需要的东西html里面有,而不是之后用ajax或者javascript加载的。
6.解析的话,BeautifulSoup不错。对于少数非常特殊的,可以考虑用re。
7,需要大量采集数据的话,学会使用框架,比如scrapy。
进阶:
加入网站需要模拟登陆,里面使用了很多ajax或者javascript,或者反爬虫厉害,用requests的session,注意F12查看到底发送了什么数据。
实在不会,就使用模拟浏览器吧,推荐selenium,虽然速度慢点,内存多点,但是真的很省力,而且基本查不出来。
最后,爬虫速度不要太快,加上time.sleep(1),尽量少用多线程,别人建站也不容易,(尤其是小站)你不给别人带来很大的麻烦,别人也就睁一只眼闭一只眼了,否则封IP不是好玩的。
有些页面喜欢使用redirect,然而requests的get和post方法中默认是直接跳转的!很可能你就带着错误的cookies和headers跳转了,所以务必将allow_redirects参数设为false
python:3种爬虫的优缺点
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 性能对比
当网页结构简单并且想要避免额外依赖(不需要安装库),使用正则表达式更为合适。当需要爬取数据量较少时,使用较慢的BeautifulSoup也可以的。当数据量大时,需要追求效益时,Lxml时最好选择。
python爬取大量数据(百万级)
当用python爬取大量网页获取想要的数据时,最重要的问题是爬虫中断问题,python这种脚本语言,一中断
进程就会退出,怎么在中断后继续上次爬取的任务就至关重要了。这里就重点剖析这个中断问题。
第一个问题: 简单点的用动态代理池就能解决,在爬取大量数据的时候,为了速度不受影响,建议使用一些缓
存的中间件将有效的代理 ip 缓存起来,并定时更新。这里推荐 github 这个仓库
, 它会做ip有效性验证并将 ip 放入 redis ,不过实现过于复杂
了,还用到了 db ,个人觉得最好自己修改一下。困难点的就是它会使用别的请求来进行判断当前的ip是否
是爬虫,当我们过于聚焦我们的爬虫请求而忽略了其他的请求时,可能就会被服务器判定为爬虫,进而这个ip
会被列入黑名单,而且你换了ip一样也会卡死在这里。这种方式呢,简单点就用 selenium + chrome 一个一个
去爬,不过速度太慢了。还是自己去分析吧,也不会过复杂的。
第二个问题: 网络连接超时是大概率会遇到的问题,有可能是在爬取的时候本地网络波动,也有可能是爬
取的服务端对ip做了限制,在爬取到了一定量级的时候做一些延迟的操作,使得一些通用的 http 库超时
( urllib )。不过如果是服务端动的手脚一般延迟不会太高,我们只需要人为的设置一个高一点的
timeout 即可(30 秒),最好在爬取开始的时候就对我们要用的爬取库进行一层封装,通用起来才好改
动。
第三个问题: 在解析大量静态页面的时候,有些静态页面的解析规则不一样,所以我们就必须得做好断点
续爬的准备了( PS : 如果简单的忽略错误可能会导致大量数据的丢失,这就不明智了)。那么在调试的过
程中断点续爬有个解决方案,就是生产者和消费者分离,生产者就是产生待爬 url 的爬虫,消费者就是爬取
最终数据的爬虫。最终解析数据就是消费者爬虫了。他们通过消息中间件连接,生产者往消息中间件发送待
爬取的目标信息,消费者从里面取就行了,还间接的实现了个分布式爬取功能。由于现在的消费中间件都有
ack 机制,一个消费者爬取链接失败会导致消息消费失败,进而分配给其他消费者消费。所以消息丢失的
概率极低。不过这里还有个 tips , 消费者的消费超时时间不能太长,会导致消息释放不及时。还有要开启
消息中间价的数据持久化功能,不然消息产生过多而消费不及时会撑爆机器内存。那样就得不偿失了。
第四个问题: 这种情况只能 try except catch 住了,不好解决,如果单独分析的话会耗费点时间。但在
大部分数据 (99%) 都正常的情况下就这条不正常抛弃就行了。主要有了第三个问题的解决方案再出现这
种偶尔中断的问就方便多了。
希望能帮到各位。
python网络爬虫可以干啥
《Python3爬虫入门到精通课程视频【附软件与资料】【34课时】--崔庆才》百度网盘资源免费下载
链接:
?pwd=zxcv 提取码:zxcv
Python3爬虫入门到精通课程视频【附软件与资料】【34课时】--崔庆才|章节5: 分布式篇|章节4: 框架篇|章节3: 实战篇|章节2: 基础篇|章节1: 环境配置|Python3爬虫课程资料代码.zip|2018-Python3网络爬虫开发实战-崔庆才.pdf|课时06:Python爬虫常用库的安装.zip|课时05:Python多版本共存配置.zip|课时04:MySQL的安装.zip|课时03:Redis环境配置.zip|课时02:MongoDB环境配置.zip|课时01:Python3+Pip环境配置.zip|课时13:Selenium详解.zip ?
socket爬虫python有哪些问题
Python使用socket进行网络通信的爬虫可能会遇到以下问题:
1. 网络错误:网络连接不稳定或者网络环境差导致连接失败或者数据传输不完整。
2. 服务器反爬虫机制:一些网站可能会设置反爬虫机制,如IP封禁、验证码、限制爬取频率等,使得爬虫无法正常工作。
3. 数据解析问题:爬取到的数据可能需要进行解析和清洗,如果没有处理好可能会影响后续的数据分析和应用。
4. 安全问题:使用socket进行爬虫时需要注意安全问题,如防止网络劫持、防止恶意攻击等。
5. 代码可维护性问题:使用socket进行爬虫时,需要处理的细节较多,如果代码不够规范、不够模块化,会影响代码的可维护性和可扩展性。