集成运算放大器的基本应用实验报告(集成运算放大器的基本应用实
集成运算放大器的线性应用实验中运算放大器为什么要进行调零?调零时应注意什么问题?可否将Rf断开进行调零
任何运放输入端都是有对称工作的,以增加共模放大倍数。但在实际工作中多少会出现不对称性(或由外部电路引起),因此在要求精度较高的放大电路中要进行调零。
调零时按照要求大小的调零电位器进行调零即可。
Rf(反馈电阻)不可以断开,否则由于运放的放大倍数都很大,还没有调零就饱和了。
模电实验集成运算放大器的应用误差分析
以下为在分析理论和实际误差中经常考虑到的运放参数:
1.温漂
2.输入偏置电压
3.增益带宽积
4.压摆率
5.摆幅
6.输入、输出阻抗
把它们的定义找到,结合你的实验就能分析出来了。
基本放大电路实验报告总结
基本放大电路实验报告总结
基本放大电路实验报告总结,很多人在生活中都会充满好奇心,对所有东西都很好奇或者是不解,那么大家都知道基本放大电路实验报告总结是怎么写吗,下面和我一起来了解学习看看吧。
基本放大电路实验报告总结1
1.理解多级直接耦合放大电路的工作原理与设计方法
2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法
3.掌握多级放大器性能指标的测试方法
4.掌握在放大电路中引入负反馈的方法
二、实验预习与思考
1.多级放大电路的耦合方式有哪些?分别有什么特点?
2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题?
3.设计任务和要求
(1)基本要求
用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知VCC=+12V, -VEE=-12V,要求设计差分放大器恒流源的射极电流IEQ3=1~1.5mA,第二级放大射极电流IEQ4=2~3mA;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。
三、实验原理
直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。
1.输入级
电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。
典型的差动放大电路采用的工作组态是双端输入,双端输出。放大电路两边对称,两晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,利于抗干扰。 该电路作为多级放大电路的输入级时,采用vi1单端输入,uo1的单端输出的工作组态。 计算静态工作点:差动放大电路的双端是对称的,此处令T1,T2的相关射级、集电极电流参数为IEQ1=IEQ2=IEQ,ICQ1=ICQ2=ICQ。设UB1=UB2≈0V,则Ue≈-Uon,算出T3的ICQ3,即为2倍的IEQ也等于2倍的ICQ。
此处射级采用了工作点稳定电路构成的恒流源电路,此处有个较为简单的确定工作点的方法:
因为IC3≈IE3,所以只要确定了IE3就可以了,而IE3 UR4UE3 ( VEE), R4R4
UE3 UB3 Uon (VCC ( VEE)) R5 Uon R5 R6
uo1 ui1采用ui1单端输入,uo1单端输出时的增益Au1
2.主放大级 (Rc//RLRL (P//)1 Rb rbeR1 rbe
本级放大器采用一级PNP管的共射放大电路。由于本实验电路是采用直接耦合,各级的工作点互相有影响。前级的差分放大电路用的是NPN型晶体管,输出端uo1处的集电极电压Uc1已经被抬得较高,同时也是第二级放大级的'基极直流电压,如果放大级继续采用NPN型共射放大电路,则集电极的工作点会被抬得更高,集电极电阻值不好设计,选小了会使放大倍数不够,选大了,则电路可能饱和,电路不能正常放大。对于这种情况,一般采用互补的管型来设计,也就是说第二级的放大电路用PNP型晶体管来设计。这样,当工作在放大状态下,NPN管的集电极电位高于基极点位,而PNP管的集电极电位低于基极电位,互相搭配后可以方便地配置前后级的工作点,保证主放大器工作于最佳的工作点上,设计出不失真的最大放大倍数。
采用PNP型晶体管作为中间主放大级并和差分输入级链接的参考电路,其中T4为主放大器,其静态工作点UB4、UE4、UC4由P1、R7、P2决定。
差分放大电路和放大电路采用直接耦合,其工作点相互有影响,简单估计方式如下:
,UC4 VEE IC4 RP2 UE4 VCC IE4 R7, UB4 UE4 Uon UE4 0.7(硅管)
由于UB4 UC1,相互影响,具体在调试中要仔细确定。 此电路中放大级输出增益AU2
3.输出级电路
输出级采用互补对称电路,提高输出动态范围,降低输出电阻。
其中T4就是主放大管,其集电极接的D1、D2是为了克服T5、T6互补对称的交越失真。本级电路没有放大倍数。
四、测试方法
用Multisim仿真设计结果,并调节电路参数以满足性能指标要求。给出所有的仿真结果。
电路图如图1所示 uo2 Rc uo1Rb rbe
仿真电路图
图1静态工作点的测量:
测试得到静态工作点IEQ3,IEQ4如图2所示,符合设计要求。
图2 静态工作点测量
输入输出端电压测试:
测试差分放大器单端输入单端输出波形如图3,输入电压为VPP=4mV,输出电压为VPP=51.5mV得到差分放大器放大倍数大约为12.89倍。放大倍数符合要求。
图3 低电压下波形图 主放大级输入输出波形如图4
图4 主放大级输入输出波形图
如图所示输入电压为VPP=51.5mV,输出电压为VPP=6.75V放大倍数为131.56倍。 整个电路输入输出电压测试如图
图5 多级放大电路输入输出波形图
得到输入电压为VPP=4mV,输出电压为VPP=4.29V,放大倍数计算得到为1062倍 实验结论:
本电路利用差动放大电路有效地抑制了零点漂移,利用PNP管放大级实现主放大电路,利用互补对称输出电路消除交越失真的影响,设计并且测试了多级放大电路,得到放大倍数为1000多倍,电路稳定工作。
基本放大电路实验报告总结2
实验一:仪器放大器设计与仿真
一. 实验目的
1.掌握仪器放大器的设计方法
2.理解仪器放大器对共模信号的抑制能力
3.熟悉仪器放大器的调试方法
4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表信号发生器等虚拟仪器的使用
二. 实验原理
仪器放大器是用来放大差值信号的高精度放大器,它具有很大的共模抑制比,极高的输入电阻,且其增益能在大范围内可调。仪器放大器原理图如下所示:
仪器放大器由三个集成运放构成。其中,U3构成减法电路,即差值放大器,U1、U2各对其相应的信号源组成对称的同相放大器,且R1=R2,R3=R5,R4=R6。 令R1=R2=R时,则
Vo2—Vo1=(1+2R/Rg)(Vi2—Vi1)
U3是标准加权减法器,Vo1、Vo2是其输入信号,其相应输出电压 Vo=—(R6/R5)Vo2+R4/(R3+R4)Vo1(1+R6/R5)
由于R3=R5=R4=R6=R,因而
Vo=Vo1—Vo2=(1+2R/Rg)(Vi1—Vi2)
仪器放大器的差值电压增益
Avf=Vo/(Vi1—Vi2)=1+2R/Rg
因此改变电阻的值可以改变仪器放大器的差值电压增益,此仪器放大器的增益是正的。
三. 实验内容
1.按照上述原理图构成仪器放大器,具体指标为:
(1)当输入信号Ui=2sinwt(mV)时,输出电压信号Uo=0.4sinwt(mV),Avf=200,f=1kHz
(2)输入阻抗要求Ri1MΩ
2.用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试。
3.记录数据并进行整理分析
四. 实验步骤
按下图连好电路,并设置函数信号发生器,输出正弦,频率为1kHz,幅度为2mV;用示波器观察波形变化
其中Avf=1+2R/Rg≈200,输入的为差模信号2mV符合实验要求
五.实验结果
如图示波器CH1、CH2、CH3分别是Vi1、Vi2、Vo, 由图可知输出Vo=0.4sinwt(V), 且和Vi1同相
六.实验心得体会
从这次实验中我学会了multisim的基本操作方法,理解了仪器放大器的原理,而且通过仿真实验更加熟悉了一些常见电路元件的功能
集成运算放大器的基本应用-模拟运算电路:实验总结:将理论计算结果和实测数据相比较,分析产生误差的原
误差原因:1、读数误差
2、仪表存在误差;
3、集成电路内部噪声及电阻电容参数热噪声
4、电阻电容等元器件的实际值与标称值之间存在误差;
5、电源电压的波动
6、运算放大器不是理想的,但当做了理想模型,参数本身就存在误差,如放大倍数 输入阻抗 输出阻抗、虚短、虚断等