化工原理课程设计总结心得精馏塔(化工原理精馏塔实验报告)

http://www.itjxue.com  2023-02-18 04:53  来源:未知  点击次数: 

化工原理课程设计 分离丙酮-水混合液的填料精馏塔 有满意答案,追加100分

毕业设计(论文)任务书

设计(论文)题目:年处理量1.0万吨甲苯-水混合液的填料塔的设计

函授站: 专业: 化工工艺 班级:xx

学生: xx 指导教师:

1.设计(论文)的主要任务及目标

塔设计计算:

a塔工艺计算(物料和能量衡算)

b 塔及塔板主要工艺尺寸的设计计算

⑶ 对苯精馏塔的流体力学验算

⑷ 相关辅助设备选型与计算

⑸ 设计结果及分析讨论

2.设计(论文)的基本要求和内容

⑴ 论文内容符合毕业设计撰写规范。

⑵ 数据可靠、真实,具有一定的代表性。

⑶ 计算过程细化、符合规范要求。

⑷ 要求论文图纸包括:生产工艺流程控制图、塔的部分装配图、X-Y图、塔板负荷性能图。

3.主要参考文献

⑴陆美娟.《化工原理》.化学工业出版社.2001年1月第1版

⑵冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版

⑶包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月

⑷陈洪钫.《化工分离过程》.化学工业出版社.1995年5月第1版

⑸陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1

关键词:回流比、精馏、泡点进料、设备、试差

目 录

前言........................................(7)

第1章 精馏方案的说明.......................(7)

第1.1节 操作压力............................(7)

第1.2节 进料状态............................(8)

第1.3节 采用强制回流(冷回流)...............(8)

第1.4节 塔釜加热方式、加热介质..............(8)

第1.5节 塔顶冷凝方式、冷却介质..............(8)

第1.6节 流程说明............................(8)

第1.7节 筛板塔的特性........................(9)

第1.8节 生产性质及用途......................(9)

第1.9节 安全与环保..........................(11)

第2章 烯烃加氢饱和单元分析.................(12)

第2.1节 反应机理及影响因素分析

第2.2节 物料平衡

第2.3节 能量平衡

第3章 精馏塔设计计算.......................(12)

第3.1节塔的工艺计算.......................(12)

第3.2节塔和塔板主要工艺尺寸的设计计算.....(25)

第4章 塔的流体力学验算.....................(31)

第4.1节校核................................(31)

第4.2节负荷性能图计算......................(34)

第5章 辅助设备选型计算.....................(39)

第5.1节换热器的计算选型....................(39)

第5.2节 管道尺寸的确定.....................(44)

第5.3节 原料槽、成品槽的确定................(45)

第6章 设计结果概要及分析讨论...............(45)

第6.1节数据要求............................(45)

第6.2节设计特点............................(46)

第6.3节 存在的问题.........................(46)

参考文献....................................(47)

符号说明.....................................(48)

附录1.......................................(52)

附录2.......................................(52)

附录3.......................................(52)

附录4.......................................(52)

前言

本论文是针对工业生产中苯-甲苯溶液这一二元物系中进行苯的提纯精馏方案,根据给出的原料性质及组成、产品性质及组成,对精馏塔进行设计和物料衡算。通过设计核算及试差等计算初步确定精馏塔的进料、塔顶、塔底操作条件及物料组成。同时对精馏塔的基本结构包括塔的主要尺寸进行了计算和选型,对塔顶冷凝器、塔底再沸器、相关管道尺寸及储罐等进行了计算和选型。在计算设计过程中参考了有关《化工原理》、《化学工程手册》、《冷换设备工艺计算手册》、《炼油设备基础知识》、《石油加工单元过程原理》等方面的资料,为精馏塔的设计计算提供了技术支持和保证。

通过对精馏塔进行设计和物料衡算等方面的计算,进一步加深了对化工原理、石油加工单元过程原理等的理解深度,开阔了视野,提高了计算、绘图、计算机的使用等方面的知识和能力,为今后在工作中进一步发挥作用打下了良好的基础。

第1章 精馏方案的说明

本精馏方案适用于工业生产中苯-甲苯溶液二元物系中进行苯的提纯。精馏塔苯塔的产品要求纯度很高,达99.9%以上,而且要求塔顶、塔底产品同时合格,以及两塔顶温度变化很窄(0.02℃),普通的精馏温度控制远远达不到这个要求。故在实际生产过程控制中只有采用灵敏板控制才能达到要求。故苯塔采用温差控制。

第1.1节 操作压力

精馏操作在常压下进行,因为苯沸点低,适合于在常压下操作而不需要进行减压操作或加压操作。同时苯物系在高温下不易发生分解、聚合等变质反应且为液体(不是混合气体)。所以,不必要用加压减压或减压精馏。另一方面,加压或减压精馏能量消耗大,在常压下能操作的物系一般不用加压或减压精馏。

第1.2节 进料状态

进料状态直接影响到进料线(q线)、操作线和平衡关系的相对位置,对整个塔的热量衡算也有很大的影响。和泡点进料相比:若采用冷进料,在分离要求一定的条件下所需理论板数少,不需预热器,但塔釜热负荷(一般需采用直接蒸汽加热)从总热量看基本平衡,但进料温度波动较大,操作不易控制;若采用露点进料,则在分离要求一定的条件下,所需理论板数多,进料前预热器负荷大,能耗大,同时精馏段与提馏段上升蒸汽量变化较大,操作不易控制,受外界条件影响大。

泡点进料介于二者之间,最大的优点在于受外界干扰小,塔内精馏段、提馏段上升蒸汽量变化较小,便于设计、制造和操作控制。

第1.3节 采用强制回流(冷回流)

采用冷回流的目的是为了便于控制回流比,回流方式对回流温度直接影响。

第1.4节 塔釜加热方式、加热介质

塔釜采用列管式换热器作为再沸器间接加热方式,加热介质为水蒸汽。

第1.5节 塔顶冷凝方式、冷却介质

塔顶采用列管式冷凝冷却器,冷却介质用冷却水。

第1.6节 流程说明

由于上游装置没有后加氢单元,所以在重整反应过程中生成的烯烃会带到本装置原料中, 烯烃的存在,会导致苯、甲苯产品的酸洗比色不合格,因此必须进行烯烃的加氢饱和。

本装置流程包括烯烃加氢反应单元和精馏单元两部分。

烯烃加氢反应单元:原料经过进料泵加压后进入换热器E101与反应生成油交换热量后,进入加热炉L101进行加热,再进入反应器R101,经过烯烃饱和加氢反应后进入热交换器E101冷却后,进入油气分离器V101,油进入精馏原料中间罐。

本精馏方案采用节能型强制回流进行流程设计,并附有在恒定进料量、进料组成和一定分离要求下的自动控制系统以保证正常操作。

精馏过程:30OC原料液从原料罐经进料泵进入原料换热器E102再经原料预热器进行预热进一步预热至泡点(97.65OC,加热介质为水蒸汽),温度升至约97.65oC,从进料口进入精馏塔T101进行精馏,塔顶气温度为81.52oC部分冷凝后的气液混合物进入塔顶冷却器(冷却介质为冷却水),冷凝后的物料进入回流罐V102,然后再通过回流泵,将料液一部分作为回流也打入塔顶,另一部分作为塔顶产品经产品冷却器进入产品储罐V103,再经产品泵P104/AB输送产品。塔釜内液体一部分进入再沸器E103,经水蒸汽加热后,回流至塔釜,另一部分与原料换热器换热后排入甲苯储罐。在整个流程中,所有的泵出口都装有压力表,所有的储槽都装有放空阀,以保证储槽内保持常压。

第1.7节 筛板塔的特性

筛板塔是最早使用的板式塔之一,它的主要优点:

(1)结构简单,易于加工,造价为泡罩塔的60%左右,为浮阀塔的80%左右;

(2)在相同条件下,生产能力比泡罩塔大20%-40%;

(3)塔板效率较高,比泡罩塔高15%左右,但稍低于浮阀塔;

(4)气体压力降较小,每板压力降比泡罩塔约低30%左右。

筛板塔的缺点是:小孔筛板易堵塞,不适宜处理脏的、粘性大的和带固体粒子的料液。

第1.8节 生产性质及用途

1.8.1 苯的性质及用途

苯是一种易燃、易挥发、有毒的无色透明液体,易燃带有特殊芳香气味的液体。分子式C6H6,相对分子量78.11,相对密度0.8794(20℃),熔点5.51℃,沸点80.1℃,闪点-10.11℃(闭杯),自燃点562.22℃,蒸气密度2.77kg/m3,蒸气压13.33kPa(26.1 ℃), 标准比重为0.829。蒸气与空气混合物爆炸限1.4%~8.0%。不溶于水,与乙醇、氯仿、乙醚、二硫化碳、四氯化碳、冰醋酸、丙酮、油混溶。遇热、明火易燃烧、爆炸。能与氧化剂,如五氟化溴、氯气、三氧化铬、高氯酸、硝酰、氧气、臭氧、过氯酸盐、(三氯化铝+过氯酸氟)、(硫酸+高锰酸盐)、过氧化钾、(高氯酸铝+乙酸)、过氧化钠发生剧烈反应,不能与乙硼烷共存。苯是致癌物之一。苯是染料、塑料、合成树脂、合成纤维、药物和农药等的重要原料,也可用作动力燃料及涂料、橡胶、胶水等溶剂。质量标准:见表1-1。

表1-1 纯苯质量标准(GB/T2283-93)

项目 指标

特级 一级 二级 三级

外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有0.003g重铬酸钾溶液的颜色

密度(20℃)/kg/m3

沸程/℃

大气压下(80.1℃)

酸洗比色

溴价/(g/100mL)

结晶点/℃

二硫化碳/(gBr/100mL)

噻吩/(g/100mL) 876~880

中性实验 中性

水分 室温(18~20℃)下目测无可见不溶水

1.8.2 甲苯的性质

甲苯有强烈的芳香气味,无色有折射力的易挥发液体,气味似苯。分子式C7H8,相对分子质量92.130,相对密度0.866(20℃/4℃),熔点-95~-94.5℃,沸点110.4℃,闪点4.44℃(闭杯),自燃点480℃,蒸气密度3.14 kg/m3,蒸气压4.89kPa(30℃) 比重D 4℃20℃、0.866,,蒸气与空气混合物的爆炸极限为1.27%~7%。几乎不溶于水,与乙醇、氯仿、乙醚、丙酮、冰醋酸、二硫化碳混溶。遇热、明火或氧化剂易着火。遇明火或与(硫酸+硝酸)、四氧化二氮、高氯酸银、三氟化溴、六氟化铀等物质反应能引起爆炸。流速过快(超过3m/s)有产生和积聚静电危险。甲苯可用氯化、硝化、磺化、氧化及还原等方法之前染料、医药、香料等中间体及炸药、精糖。由于甲苯的结晶点很低,故可用作航空燃料及内燃机燃料的添加剂。质量标准:见表1-2。

表1-2 甲苯质量标准(GB/T2284-93)

项目 指标

特级 一级 二级

外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有0.003g重铬酸钾溶液的颜色

密度(20℃)/(kg/m3)

沸程/℃

大气压下(110.6℃)

酸洗比色

溴价/(gBr/100mL) 863~868

中性实验 中性

水分 室温(18~20℃)下目测无可见不溶水

第1.9 安全与环保

1.9.1 安全注意事项

苯类产品是易燃、易爆、有毒的无色透明液体,其蒸汽与空气混合能形成爆炸性混合物,因此,应特别注意防火,强化安全措施。

(1)不准有明火和火花,设备必须密封,以减少苯蒸汽挥发散发入容器中,设备的放散管应通入大气,其管口用细金属网遮蔽,使贮槽或蒸馏设备中的苯类产品不致因散出蒸汽回火而引起燃烧,厂房应设有良好的通风设备,防止苯类蒸汽的聚集。

(2)所有金属结构应按规定在几个地点上接地,为防止液体自由下落而引起静电荷的产生,将引入贮槽中所有管道均应安装到接近贮槽的底部,电动机应放在单独的厂房内。

(3)应设有泡沫灭火器和蒸汽灭火装置,不能用水灭火。

(4)工人进入贮槽或设备进行清扫或修理前,油必须全部放空,所有管道均需切断,设备应用水蒸汽彻底清扫后才允许进入并注意通风,检修人员没有动火证严禁在生产区域内动火。

(5)进入生产区域或生产无关人员,不得乱动设备和计量仪表等。

(6)及时清除设备管线泄漏情况,严防中毒着火、爆炸等事故的发生。

(7)泄漏应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,抑制蒸发。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

1.9.2 环境保护

认真执行环境保护方针、政策、坚持污染防治设施与生产装置同时设计、同时施工、同时投产。现将“三废”治理措施分析述如下:

(1)废水:各设备间接冷却水回收用于炼焦车间熄焦用,工艺产品分离水送往生化装置进行处理。设备冲洗水经初步沉淀和油水分离后送入生化处理。

(2)废气:水凝气体回收引入列管户前燃烧,产品贮槽加水喷淋装置和氮密封措施,防止挥发污染大气环境。

(3)废渣:生产过程中生产的废渣送往回收工段作为原料使用。

定期检测个生产岗位苯含量和生产下水中各污染均含量,严防超标现象的发生。

第2章 烯烃加氢饱和单元分析

2.1 反应机理及影响因素分析

(1)反应机理

单烯烃 CnH2n+H2→CnH2n+2

双烯烃 CnH2n-2+2H2→CnH2n+2

环烯烃

烯烃的加氢饱和反应也为耗氢和放热反应。

(2) 烯烃的加氢饱和反应过程的影响因素

烯烃的加氢饱和反应过程的影响因素除催化剂性能外,主要有原料性质、反应温度、反应压力、氢油比和空速等。

①原料性质

加工烯烃含量较高的原料时,需要较高的反应苛刻度(即较高的反应压力和反应温度,较低的反应空速)。此外一定要注意原料油罐的惰性气体保护,最好是直接进装置,避免中间与空气接触发生氧化生成胶质,导致催化剂失活加快。

②反应温度

反应温度通常是指催化剂床层平均温度。烯烃的加氢饱和反应是一种放热反应,提高反应温度不利于加氢反应的化学平衡,但能明显提高化学反应速度,提高精制深度。过高的反应温度会促进加氢裂化副反应的发生,使产品液体收率下降,导致催化剂上积炭速率加快,降低催化剂使用寿命;反应温度过低,不能保证将杂质除净。

在很高温度下,烯烃饱和度有一个明显的限制,结果使在高温操作比低温操作的产品中有更多的残存烯烃,当原料中有明显的轻组分,使用新催化剂时硫化氢与烯烃反应生成醇,在较低温度下操作可避免硫醇的生成。

根据催化剂活性和原料油中的烯烃含量,一般预加氢的反应温度为150~180℃。随着运转时间的延长,逐步提高反应温度,以补偿催化剂的活性降低。

③反应压力

当要求一定的产品质量时,压力的选择主要是考虑催化剂的使用寿命和原料油中的烯烃含量。一般而言,压力愈高,催化剂操作周期愈长;原料油烯烃含量愈高,选择操作压力也愈高。提高反应压力将促进加氢反应速度,增加精制深度,并可保持催化剂的活性。但压力过高会促进加氢裂解反应,使产品总液收下降,同时过高的反应压力会增加投资及运转费用。

④氢油比

所谓氢油比是反映标准状态时,氢气流量与进料量的比值。可用H2/HC表示。提高氢油比,不仅有利于加氢反应的进行,并能防止结焦,起到保护催化剂的作用。但是,在原料油进料一定的情况下,氢油比过大会减少原料油与催化剂接触时间,反而对加氢反应不利,导致精制深度下降,产品质量下降,同时也增大了系统压降和压缩机负荷,操作费用增加。

⑤空速

空速指单位(质量或体积)催化剂在单位时间内处理的原料量,简写为h-1 。空速分为质量空速和体积空速。常用体积空速(LHSV),它的倒数相当于反应接触时间,称为假接触时间。因此空速的大小意味着原料与催化剂接触时间的长短。空速过大,即单位催化剂处理的原料量越多,其接触时间应越短,影响了精制深度;空速过小增加了加氢裂解反应,使产品液收率下降,运转周期缩短,降低了装置的处理量。

2.2 物料平衡

表2-1烯烃加氢反应单元物料数据 单位:吨/日

入 方 出 方

原料油 43.2 精馏进料 42.32

氢气 0.52 损失 1.40

合计 43.72 合计 43.72

2.3 能量平衡(以加热炉为例)

2.3.1 原料进出加热炉数据

原料进出加热炉数据见表2-2。

表2-2 原料进出加热炉数据

入 方(80℃) 出 方(160℃)

单位

项目 组成 数据 焓值 热量 单位

项目 组成 数据 焓值 热量

m% Kcal/kg wkcal m% Kcal/kg wkcal

油 苯 0.7 130 16.38 原

油 苯 0.7 154 19.40

甲苯 0.3 128 6.912 甲苯 0.3 158 8.532

烯烃 烯烃

氢气 540 1.170 氢气 1090 2.362

合计 24.462 合计 30.294

注:原料中烯烃含量很少在计算过程中可忽略不计。

2.3.2 加热炉热平衡

由表2-2可以知道,原料油经过加热炉后,热量增加值为:5.832wkcal/t.

加热炉需要燃烧瓦斯进行提供。加热炉用瓦斯组成见表2-3。

表2-3 加热炉用瓦斯组成及焓值计算表

  成份组成 体积热值 分析数据 焓值

1 氢气 2650 44.91 1190.115

2 氧气 0 11.73 0

3 氮气 0 40.56 0

4 二氧化碳   0.02 0

5 一氧化碳 3018 0 0

6 甲烷 8529 1.61 137.3169

7 乙烷 15186 0.48 72.8928

8 乙烯 14204 0.42 59.6568

9 丙烷 21742 0.05 10.871

10 丙烯 20638 0.07 14.4466

11 异丁烷 26100 0.03 7.83

12 正丁烷 28281 0.03 8.4843

13 正丁烯 27160 0.02 5.432

14 异丁烯 27160 0.01 2.716

15 反丁烯 27160 0.02 5.432

16 顺丁烯 27160 0.01 2.716

17 碳五以上 34818 0.03 10.4454

  合计   100 1528.3548

第七章 参考文献

1 化工原理》上下册.化学工业出版社.2006年5月第3版

2 冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版

3 包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月

4 陈洪钫.《化工分离过程》,化学工业出版社,1995年5月第1版

5 陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1版

6 沈复等.《石油加工单元过程原理》上下册.中国石化出版社.2004年8月第1版

7.刘巍等.《冷换设备工艺计算手册》.中国石化出版社.2003年9月第1版

8.马秉骞主编.《炼油设备基础知识》中国石化出版社.2003年1月第1版

9.周志成等.《石油化工仪表自动化》中国石化出版社.1994年5月第1版

10.田顾慧.《化工设备》中国石化出版社.1996年6月第1版

11.沈复 李阳初.《石油加工单元过程原理》中国石化出版社.2004年8月第1版

12.陆美娟.《化工原理》化学工业出版社. 2006年1月第10版

符号说明

A换热面积m2

Aa  鼓泡区面积 m2

Af   降液管横截面积m2

An   有效传质区面积m2

Ao  筛孔面积m2

AT 塔横截面积 m2

A 质量分率-

C 负荷系数-

CP  比热KJ/Kg.OC(KJ/Kg.K)

D  塔顶产品流率Kmol/h(Kg/h)

Dg  公称直径m

DT 塔径 m

D  管内径  mm

d1    管外径   mm

do 孔径 mm

dm   管平均直径mm

E  液流收缩系数 -

ET全塔板效率-

ev  雾沫夹带量 Kg液体/Kg气体

F  进料流率  Kmol/h(Kg/h)

H    塔高 m

HL板上清夜层高度mm

HT板间距  m

Hd 降液管内清夜层高度 m

HD 塔顶空间高度 m

HB 塔底空间高度  m

hd 气体通过干板压降m

ho  降液管下沿到塔板间距离m

how  溢流堰上液头高 m

hp   气体通过塔扳压降m

hr  液体通过降液管的压降 m

hw 溢流堰高度m

hσ 液体表面张力引起的压降 m

Ko  以内壁为基准的总传热系数 Kcal/m2.H.oC

K 稳定系数

L 液体流量  Kmol/h(Kg/h,m3/h)

lW溢流堰堰长 

ms 冷却剂质量流量 Kg/h

N 实际塔板数 -

NT 理论塔板数 -

Nt 换热器总管数 -

N 开孔数

Q 换热器热负荷 W

R 回流比 -

Rmim 最小回流比 -

Rsi 换热管内垢阻系数 m2?h?oC/Kcal

r 气化潜热 KJ/Kg

Tc 临界温度 K

T 孔间距 mm

Tp 板厚度 mm

ua 以鼓泡区面积为基准的气速 m/s

uf 液泛气速 m/s

un 空塔气速 m/s

uo 以筛孔面积为基准的气速 m/s

uow 漏液点气速 m/s

V 塔内上升气体流量 Kmol/h(Kg/h,m3/h)

W 塔釜采出液体量 Kmol/h(Kg/h)

Wc 边缘区宽度 m(mm)

Wd 降液管宽度 m(mm)

Ws 塔板入口安定区宽度 m(mm)

Ws’ 塔板出口安定区宽度 m(mm)

X 液相摩尔分率 -

Y 气相摩尔分率 -

A 相对挥发度 -

Ai 以内壁为基准的传热膜系数 Kcal/m2?h?oC

Ao 以外壁为基准的传热膜系数 Kcal/m2?h?oC

β 充气系数 -

σ 表面张力 dyn/cm2

ρL 液相密度 Kg/m3

ρv(g) 气相密度 Kg/m3

μ 粘度 Cp

开孔率 -

Ф 装料系数 -

τ 停留时间 s

λ

化工原理课程设计结束语怎么写

通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实。在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力。

化工原理课程设计

化工原理课程设计

题 目 乙醇-水溶液连续精馏塔优化设计

目 录

设计任务书………………………………………………………………3

英文摘要前言……………………………………………………………4

前言………………………………………………………………………4

精馏塔优化设计…………………………………………………………5

精馏塔优化设计计算……………………………………………………5

设计计算结果总表………………………………………………………22

参考文献…………………………………………………………………23

课程设计心得……………………………………………………………23

精馏塔优化设计任务书

一、设计题目

乙醇—水溶液连续精馏塔优化设计

二、设计条件

1.处理量: 15000 (吨/年)

2.料液浓度: 35 (wt%)

3.产品浓度: 93 (wt%)

4.易挥发组分回收率: 99%

5.每年实际生产时间:7200小时/年

6. 操作条件:①间接蒸汽加热;

②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;

三、设计任务

a) 流程的确定与说明;

b) 塔板和塔径计算;

c) 塔盘结构设计

i. 浮阀塔盘工艺尺寸及布置简图;

ii. 流体力学验算;

iii. 塔板负荷性能图。 d) 其它

i. 加热蒸汽消耗量;

ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计

(南华大学化学化工学院,湖南衡阳 421001)

摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。

关键词:精馏塔,浮阀塔,精馏塔的附属设备。

(Department of Chemistry,University of South China,Hengyang 421001)

Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme.

Keywords: rectification column, valve tower, accessory equipment of the rectification column.

前 言

乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。浮阀有很多种形式,但最常用的形式是F1型和V-4型。F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,才用轻阀。浮阀塔具有下列优点:1、生产能力大。2、操作弹性大。3、塔板效率高。4、气体压强降及液面落差较小。5、塔的造价低。浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。

精馏塔优化设计计算

在常压连续浮阀精馏塔中精馏乙醇——水溶液,要求料液浓度为35%,产品浓度为93%,易挥发组分回收率99%。年生产能力15000吨/年

操作条件:①间接蒸汽加热

②塔顶压强:1.03atm(绝对压强)

③进料热状况:泡点进料

一 精馏流程的确定

乙醇——水溶液经预热至泡点后,用泵送入精馏塔。塔顶上升蒸气采用全冷凝后,部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。工艺流程图见图

二 塔的物料衡算

查阅文献,整理有关物性数据

⑴水和乙醇的物理性质

名称

分子式

相对分子质量

密度 

20℃

沸 点

101.33kPa

比热容

(20℃)

Kg/(kg.℃)

黏度

(20℃)

mPa.s

导热系数

(20℃)

/(m.℃) 表面

张力

(20℃)

N/m

水 18.02 998 100 4.183 1.005 0.599 72.8

乙醇 46.07 789 78.3 2.39 1.15 0.172 22.8

⑵常压下乙醇和水的气液平衡数据,见表

常压下乙醇—水系统t—x—y数据如表1—6所示。

表1—6 乙醇—水系统t—x—y数据

沸点t/℃ 乙醇摩尔数/% 沸点t/℃ 乙醇摩尔数/%

气相 液相 气相 液相

99.9 0.004 0.053 82 27.3 56.44

99.8 0.04 0.51 81.3 33.24 58.78

99.7 0.05 0.77 80.6 42.09 62.22

99.5 0.12 1.57 80.1 48.92 64.70

99.2 0.23 2.90 79.85 52.68 66.28

99.0 0.31 3.725 79.5 61.02 70.29

98.75 0.39 4.51 79.2 65.64 72.71

97.65 0.79 8.76 78.95 68.92 74.69

95.8 1.61 16.34 78.75 72.36 76.93

91.3 4.16 29.92 78.6 75.99 79.26

87.9 7.41 39.16 78.4 79.82 81.83

85.2 12.64 47.49 78.27 83.87 84.91

83.75 17.41 51.67 78.2 85.97 86.40

82.3 25.75 55.74 78.15 89.41 89.41

乙醇相对分子质量:46;水相对分子质量:18

25℃时的乙醇和水的混合液的表面张力与乙醇浓度之间的关系为:

式中 σ——25℃时的乙醇和水的混合液的表面张力,N/m;

x——乙醇质量分数,%。

其他温度下的表面张力可利用下式求得

式中 σ1——温度为T1时的表面张力;N/m;

σ2——温度为T2时的表面张力;N/m;

TC——混合物的临界温度,TC=∑xiTci ,K;

xi——组分i的摩尔分数;

TCi——组分i的临界温度, K。

料液及塔顶、塔底产品的摩尔分数

X==0.174

X==0.838

X==0.0039

平均摩尔质量

M=0.17446.07+(1-0.174)18.02=22.9 kg/kmol

M= 0.83846.07+ (1-0.838) 18.02=41.52kg/kmol

M=0.003946.07+(1-0.0039)18.02=18.12kg/kmol

物料衡算

已知:F==74.83

总物料衡算 F=D+W=74.83

易挥发组分物料衡算 0.838D+0.0039W=74.830.174

联立以上二式得:

D=15.25kg/kmol

W=59.57kg/kmol

三 塔板数的确定

理论塔板数的求取

⑴根据乙醇——水气液平衡表1-6,作图

⑵求最小回流比Rmin和操作回流比

因为乙醇-水物系的曲线是不正常的平衡曲线,当操作线与q线的交点尚未落到平衡线上之前,操作线已经与平衡线相切,如图g点所示. 此时恒浓区出现在g点附近, 对应的回流比为最小的回流比. 最小回流比的求法是由点a(,)向平衡线作切线,再由切线的斜率或截距求

作图可知 b=0.342 b==0.342 Rmin =1.45

由工艺条件决定 R=1.6R

故取操作回流比 R=2.32

⑶求理论板数

塔顶,进料,塔底条件下纯组分的饱和蒸气压

组分 饱和蒸气压/kpa

塔顶 进料 塔底

水 44.2 86.1 101.33

乙醇 101.3 188.5 220.0

①求平均相对挥发度

塔顶 ===2.29

进料 ==2.189

塔底 ==2.17

全塔平均相对挥发度为

===2.23

===2.17

②理论板数

由芬斯克方程式可知

N===7.96

由吉利兰图查的 即

解得 =14.2 (不包括再沸器)

③进料板

前已经查出 即

解得 N=6.42

故进料板为从塔顶往下的第7层理论板 即=7

总理论板层数 =14.2 (不包括再沸器)

进料板位置 =7

2、全塔效率

因为=0.17-0.616lg

根据塔顶、塔釜液组成,求塔的平均温度为,在该温度下进料液相平均粘计划经济为

=0.1740.41+(1-0.174)0.3206=0.336

=0.17-0.616lg0.336=0.462

3、实际塔板数

精馏段塔板数:

提馏段塔板数:

四、塔的工艺条件及物性数据计算

以精馏段为例:

操作压力为

塔顶压力: =1.04+103.3=104.34

若取每层塔板压强 =0.7

则进料板压力: =104.34+130.7=113.4kpa

精馏段平均操作压力 =kpa

2、温度

根据操作压力,通过泡点方程及安托因方程可得

塔顶 =78.36

进料板=95.5

=

3、平均摩尔质量

⑴ 塔顶==0.838 =0.825

= 0.83846.07+(1-0.838)18.02=41.52 kg/kmol

=0.82546.07+(1-0.825)18.02=41.15 kg/kmol

⑵ 进料板: = 0.445 =0.102

= 0.44546.07+(1-0.445)18.02=30.50 kg/kmol

=0.10246.07+(1-0.102)18.02=20.88 kg/kmol

精馏段的平均摩尔质量

= kg/kmol

= kg/kmol

4、平均密度

⑴液相密度

=

塔顶: = =796.7

进料板上 由进料板液相组成 =0.102

=

=

=924.2

故精馏段平均液相密度=

⑵气相密度

=

5、液体表面张力

=

=0.83817.8+(1-0.838)0.63=15.0

=0.10216.0+(1-0.102)0.62=2.20

=

6、液体粘度

=

=0.8380.55+(1-0.838)0.37=0.521

=0.1020.34+(1-0.102)0.29=0.295

=

以提馏段为例

平均摩尔质量

塔釜 = 0.050 =0.0039

=0.05046.07+(1-0.050)18.02=19.42 kg/kmol

=0.003946.07+(1-0.0039)18.02=18.12 kg/kmol

提馏段的平均摩尔质量

= kg/kmol

= kg/kmol

平均密度

塔釜,由塔釜液相组成 =0.0039

=0.01

=

∴ =961.5

故提馏段平均液相密度

=

⑵气相密度

==

五 精馏段气液负荷计算

V=(R+1)D=(2.32+1)15.25=50.63

== m

L=RD=2.3215.25=35.38

= m

六 提馏段气液负荷计算

V’=V=50.63

=0.382 m

L’=L+F=35.38+74.83=110.2

=0.0006 m

七 塔和塔板主要工艺尺寸计算

1塔径

首先考虑精馏段:

参考有关资料,初选板音距=0.45m

取板上液层高度=0.07m

故 -=0.45-0.07=0.38m

==0.0239

查图可得 =0.075

校核至物系表面张力为9.0mN/m时的C,即

C==0.075=0.064

=C=0.064=1.64 m/s

可取安全系数0.70,则

u=0.70=0.71.64=1.148 m/s

故 D==0.645 m

按标准,塔径圆整为0.7m,则空塔气速为0.975 m/s

2 精馏塔有效高度的计算

精馏段有效高度为

=(13-1)0.45=5.4m

提馏段有效高度为

=(20-1)0.45=8.55m

在进料孔上方在设一人孔,高为0.6m

故精馏塔有效高度为:5.4+8.55+0.6=14.55m

3 溢流装置

采用单溢流、弓形降液管

⑴ 堰长

取堰长 =0.75D

=0.750.7=0.525m

⑵ 出口堰高

=

选用平直堰,堰上液层高度由下式计算

=

近似取E=1.03,则

=0.017

故 =0.07-0.017=0.053m

⑶ 降液管的宽度与降液管的面积

由查《化工设计手册》

得 =0.17,=0.08

故 =0.17D=0.12 =0.08=0.031

停留时间 =39.9s (5s符合要求)

⑷ 降液管底隙高度

=-0.006=0.053-0.006=0.047m

塔板布置及浮阀数目击者及排列

取阀孔动能因子 =9

孔速 ===8.07m

浮阀数 n===39(个)

取无效区宽度 =0.06m

安定区宽度 =0.07m

开孔区面积

R==0.29m

x==0.16m

故 ==0.175m

浮阀排列方式采用等腰三角形叉排

取同一磺排的孔心距 a=75mm=0.075m

估算排间距h

h===0.06m

八 塔板流体力学校核

1、气相通过浮塔板的压力降,由下式

⑴ 干板阻力 ==0.027

⑵ 液层阻力 取充气系数数 =0.5,有

==0.50.07=0.035

⑶ 液体表面张力所造成阻力此项可以忽略不计。

故气体流经一层浮阀塔塔板的压力降的液柱高度为:

=0.027+0.035=0.062m

常板压降

=0.062860.59.81=523.4(0.7K,符合设计要求)。

淹塔

为了防止淹塔现象了生,要求控制降液管中清液层高度符合,其中

由前计算知 =0.061m,按下式计算

=0.153=0.153=0.00002m

板上液层高度 =0.07m,得:

=0.062+0.07+0.00002=0.132m

取=0.5,板间距今为0.45m,=0.053m,有

=0.5(0.45+0.053)=0.252m

由此可见:,符合要求。

雾沫夹带

由下式可知 0.1kg液/kg气

===0.069

浮阀塔也可以考虑泛点率,参考化学工程手册。

泛点率=100%

=D-2=0.7-20.12=0.46

=-2=0.3875-20.031=0.325

式中——板上液体流经长度,m;

——板上液流面积,;

——泛点负荷系数,取0.126;

K——特性系数,取1.0.

泛点率=

=36.2% (80%,符合要求)

九 塔板负荷性能图

1、雾沫夹带线

按泛点率=80%计

100%=80%

将上式整理得

0.039+0.626=0.0328

与分别取值获得一条直线,数据如下表。

0.00035 0.00085

0.835 0.827

2、泛液线

通过式以及式得

=

由此确定液泛线方程。

=

简化上式得关系如下

计算数据如下表。

0.00035 0.00055 0.00065 0.00085

0.8215 0.8139 0.8105 0.8040

3、液相负荷上限线

求出上限液体流量值(常数)

以降液管内停留时间=5s

4、漏夜线

对于型重阀,由,计算得

5、液相负荷下限线

去堰上液层高度=0.006m

根据计算式求的下限值

取E=1.03

经过以上流体力学性能的校核可以将精馏段塔板负荷性能图划出。如图

由塔板负荷性能图可以看出:

① 在任务规定的气液负荷下的操作点

P(0.00083,0.630)(设计点),处在适宜的操作区内。

② 塔板的气相负荷上限完全有雾沫夹带控制,操作下限由漏液控制。

③ 按固定的液气比,即气相上限=0.630 ,气相下限=0.209 ,求出操作弹性K,即

K==3.01

十 精馏塔的主要附属设备

1 冷凝器

(1)冷凝器的选择:强制循环式冷凝器

冷凝器置于塔下部适当位置,用泵向塔顶送回流冷凝水,在冷凝器和泵之间需设回流罐,这样可以减少台架,且便于维修、安装,造价不高。

(2)冷凝器的传热面积和冷却水的消耗量

热流体为78.36℃的93%的乙醇蒸汽,冷流体为20℃的水

Q=qm1r1 Q=qm2r2

Q—单位时间内的传热量,J/s或W;

qm1, qm2—热、冷流体的质量流量,kg/s;

r1 ,r2—热,冷流体的汽化潜热,J/kg

r1=600 kJ/㎏ r2=775 kJ/㎏ qm1=0.153kg/s

Q=qm1r1=0.153×600000=91800J/s

Q=qm2r2=775000 qm2=91800

∴ qm2=0.12 kg/s

传热面积:

A=

==21.2

K取700W·m-2/℃

∴ A=

2 再沸器

(1)再沸器的选择:釜式再沸器

对直径较大的塔,一般将再沸器置于踏外。其管束可抽出,为保证管束浸于沸腾器液中,管束末端设溢流堰,堰外空间为出料液的缓冲区。其液面以上空间为气液分离空间。釜式再沸器的优点是气化率高,可大80%以上。

(2)加热蒸汽消耗量

Q=qm1r1 Q=qm2r2

Q—单位时间内的传热量,J/s或W;

qm1, qm2—热、冷流体的质量流量,kg/s;

r1 ,r2—热,冷流体的汽化潜热,J/kg

∵ r1=2257 kJ/㎏ r2=1333 kJ/㎏ qm2=0.43kg/s

∴ Q=qm2r1=0.43×1333=573.2 kJ/s=2257 qm1

∴ 蒸汽消耗量qm1为0.254 kg/s

表 浮阀塔板工艺设计计算结果

序号 项目 数值

1 平均温度tm,℃ 86.93

2 平均压力Pm,kPa 108.89

3 液相流量LS,m3/s 0.00035

4 气相流量VS,m3/s 0.375

5 实际塔板数 33

6 塔径,m 0.70

7 板间距,m 0.45

8 溢流形式 单溢流

9 堰长,m 0.525

10 堰高,m 0.053

11 板上液层高度,m 0.07

12 堰上液层高度,m 0.047

13 安定区宽度,m 0.07

14 无效区宽度,m 0.06

15 开孔区面积,m2 0.175

16 阀孔直径,m 0.039

17 浮阀数 39

18 孔中心距,m 0.075

19 开孔率 0.147

20 空塔气速,m/s 0.8

21 阀孔气速,m/s 8.07

22 每层塔板压降,Pa 700

23 液沫夹带,(kg液/kg气) 0.069

24 气相负荷上限,m3/s 0.00356

25 液相负荷上限,m3/s 0.00028

26 操作弹性 3.01

参考文献

[1]陈英男、刘玉兰.常用华工单元设备的设计[M].上海:华东理工大学出版社,2005、4

[2]刘雪暖、汤景凝.化工原理课程设计[M].山东:石油大学出版社,2001、5

[3]贾绍义、柴诚敬.化工原理课程设计[M].天津:天津大学出版社,2002、8

[4]路秀林、王者相.塔设备[M].北京:化学工业出版社,2004、1

[5]王明辉.化工单元过程课程设计[M].北京:化学工业出版社,2002、6

[6]夏清、陈常贵.化工原理(上册)[M].天津:天津大学出版社,2005、1

[7]夏清、陈常贵.化工原理(下册)[M].天津:天津大学出版社,2005、1

[8]《化学工程手册》编辑委员会.化学工程手册—气液传质设备[M]。北京:化学工业出版社,1989、7

[9]刘光启、马连湘.化学化工物性参数手册[M].北京:化学工业出版社,2002

[10]贺匡国.化工容器及设备简明设计手册[M].北京:化学工业出版社,2002

课程设计心得

通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实。在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力。

精馏塔的工作原理及参考文献。

板式精馏塔的设计

文档类别: 课程设计

文档大小: 2.99 MB

文档评级:

文档格式: Word文件,WPS格式文档

文档更新: 2006-6-14 17:48:33

页面刷新: 2009-7-5 23:34:15

下载次数: 3782

其它信息:

全文下载

Word文件格式下载

6 文钱

文钱不够?

文档介绍:

之外,恳请各位读者批评指正。

目 录

前 言 2

第一章 总论 1

一、化工原理课程设计能力目标 1

二、化工原理课程设计的内容 1

三、化工原理课程设计的步骤 1

四、化工原理课程设计的注意事项 2

第二章 板式精馏塔的工艺设计 4

一、概述 4

二、板式精馏塔设计的内容 4

三、精馏塔设计的一般步骤 5

四、设计方案的确定 6

五、板式精馏塔的工艺计算 7

(四)塔效率估算 13

六、塔板及塔的主要工艺尺寸设计 14

(三)溢流装置 18

第三章 板式塔的结构设计初步 32

(一)结构初步 32

(二)辅助设备 33

第四章 常用设计数据 34

(一)单流型塔板系列参数 34

主要参考文献 50

这里有自己去下载

筛板式精馏塔的课程设计心得体会

化工原理课程设计是化工原理教学中的一个环节,它要求对化工原理课程的各个方面都比较熟悉,特别是计算部分对化工原理课程掌握的要求度更高,并且对设备的选型及设计要有一定的了解,对化工绘图能力要有一定的要求。通过这段期间的课程设计,我对化工原理设计有了进一步的认识,而且对化工原理精馏这一个章节的知识更加熟悉,可以说是进一步的巩固了。

此外,课程设计是对以往学过的知识加以检验,它能够培养我们理论联系实际的能力,尤其是这次精馏塔设计更使我们深入的理解和认识了化工生产过程,使我们所学的知识不局限于书本,并锻炼了我的逻辑思维能力。

设计过程中还培养了我的自学能力,设计中的许多知识都需要查阅资料和文献,并要求加以归纳、整理和总结。通过自学及老师的指导,不仅巩固了我所学的化工原理知识,更极大地拓宽了我的知识面,让我更加深刻地认识到实际化工生产过程和理论的联系和差别,这对将来的毕业设计及工作无疑将起到重要的作用。

在此次化工原理设计过程中,我的收获很大,感触也很深,特别是当遇到难题感到束手无策时就想放弃,但我知道那只是暂时的。在老师和同学们的帮助下,我克服了种种困难课程设计圆满完成了。我更觉得学好基础知识的重要性,以便为将来的工作打下良好的基础。

在此,特别感谢老师,您的指导使得我的设计工作得以圆满完成。此外,在设计过程中还得到了许多同学的热心帮助,一并给以衷心的感谢!

(责任编辑:IT教学网)

更多
上一篇:没有了

推荐其他营销文章