卷积神经网络编程(卷积神经网络编程难不难)

http://www.itjxue.com  2023-02-16 01:44  来源:未知  点击次数: 

怎样用python构建一个卷积神经网络?

用keras框架较为方便

首先安装anaconda,然后通过pip安装keras

1、#导入各种用到的模块组件

from __future__ import absolute_import

from __future__ import print_function

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Activation, Flatten

from keras.layers.advanced_activations import PReLU

from keras.layers.convolutional import Convolution2D, MaxPooling2D

from keras.optimizers import SGD, Adadelta, Adagrad

from keras.utils import np_utils, generic_utils

from six.moves import range

from data import load_data

import random

import numpy as np

np.random.seed(1024) ?# for reproducibility

2、。#打乱数据

index = [i for i in range(len(data))]

random.shuffle(index)

data = data[index]

label = label[index]

print(data.shape[0], ' samples')

#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数

label = np_utils.to_categorical(label, 10)

###############

#开始建立CNN模型

###############

#生成一个model

model = Sequential()

3、#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。

#border_mode可以是valid或者full,具体看这里说明:

#激活函数用tanh

#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))

model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))

model.add(Activation('tanh'))

#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数

4、全连接层,先将前一层输出的二维特征图flatten为一维的。

#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4

#全连接有128个神经元节点,初始化方式为normal

model.add(Flatten())

model.add(Dense(128, init='normal'))

model.add(Activation('tanh'))

#Softmax分类,输出是10类别

model.add(Dense(10, init='normal'))

model.add(Activation('softmax'))

#############

#开始训练模型

##############

#使用SGD + momentum

#model.compile里的参数loss就是损失函数(目标函数)

sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])

#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.

#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。

#validation_split=0.2,将20%的数据作为验证集。

model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)

"""

#使用data augmentation的方法

#一些参数和调用的方法,请看文档

datagen = ImageDataGenerator(

featurewise_center=True, # set input mean to 0 over the dataset

samplewise_center=False, # set each sample mean to 0

featurewise_std_normalization=True, # divide inputs by std of the dataset

samplewise_std_normalization=False, # divide each input by its std

zca_whitening=False, # apply ZCA whitening

rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)

width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)

height_shift_range=0.2, # randomly shift images vertically (fraction of total height)

horizontal_flip=True, # randomly flip images

vertical_flip=False) # randomly flip images

# compute quantities required for featurewise normalization

# (std, mean, and principal components if ZCA whitening is applied)

datagen.fit(data)

for e in range(nb_epoch):

print('-'*40)

print('Epoch', e)

print('-'*40)

print("Training...")

# batch train with realtime data augmentation

progbar = generic_utils.Progbar(data.shape[0])

for X_batch, Y_batch in datagen.flow(data, label):

loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)

progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )

如何自己动手写卷积神经网络代码

没有卷积神经网络的说法,只有卷积核的说法。电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。用Photoshop等图像处理,施展的魔法几乎是无止境的。四种基本图像处理效果是模糊、锐化、浮雕和水彩。?这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。?用PhotoshopCS6,可以很方便地对图像进行处理。模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。希望我能帮助你解疑释惑。

卷积神经网络CNN(Convolutional Neural Network)

上图计算过程为,首先我们可以将右边进行卷积的可以称为过滤器也可以叫做核,覆盖到左边第一个区域,然后分别按照对应位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;

按照上述的计算方法逐步按右移一个步长(步长可以设定为1,2,...等),然后按往下移,逐渐计算相应的值,得出最终的值。

如上图显示,对于第一个图像矩阵对应的图,一边是白色,一边是黑色,那么中间就会存在一个垂直的边缘,我们可以选择一个垂直边缘检测过滤器,如乘法右边的矩阵,那么两者做卷积后得出的图会显示如等号右边的结果矩阵对应的灰度图中间会有一个白色的中间带,也就是检测出来的边缘,那为什么感觉中间边缘带会比较宽呢?而不是很细的一个局域呢?原因是我们输入的图像只有6*6,过于小了,如果我们选择输出更大的尺寸的图,那么结果来说就是相对的一个细的边缘检测带,也就将我们的垂直边缘特征提取出来了。

上述都是人工选择过滤器的参数,随着神经网络的发展我们可以利用反向传播算法来学习过滤器的参数

我们可以将卷积的顾虑器的数值变成一个参数,通过反向传播算法去学习,这样学到的过滤器或者说卷积核就能够识别到很多的特征,而不是依靠手工选择过滤器。

- padding 操作,卷积经常会出现两个问题:

1.每经过一次卷积图像都会缩小,如果卷积层很多的话,后面的图像就缩的很小了;

2.边缘像素利用次数只有一次,很明显少于位于中间的像素,因此会损失边缘图像信息。

为了解决上述的问题,我们可以在图像边缘填充像素,也就是 padding 操作了。

如果我们设置在图像边缘填充的像素数为p,那么经过卷积后的图像是:(n+2p-f+1)x(n+2p-f+1).

如何去选择p呢

通常有两种选择:

-Valid:也就是说不填充操作(no padding),因此如果我们有nxn的图像,fxf的过滤器,那么我们进行卷积nxn fxf=(n-f+1)x(n-f+1)的输出图像;

-Same:也就是填充后是输出图像的大小的与输入相同,同样就有(n+2p)x(n+2p) fxf=nxn,那么可以算,n+2p-f+1=n,得到p=(f-1)/2。

通常对于过滤器的选择有一个默认的准则就是选择过滤器的尺寸是奇数的过滤器。

- 卷积步长设置(Strided COnvolution)

卷积步长也就是我们进行卷积操作时,过滤器每次移动的步长,上面我们介绍的卷积操作步长默认都是1,也就是说每次移动过滤器时我们是向右移动一格,或者向下移动一格。

但是我们可以对卷积进行步长的设置,也就是我们能够对卷积移动的格数进行设置。同样假如我们的图像是nxn,过滤器是fxf,padding设置是p,步长strided设置为s,那么我们进行卷积操作后输出的图像为((n+2p-f)/s+1)x((n+2p-f)/s+1),那么这样就会出现一个问题,如果计算结果不是整数怎么办?

一般是选择向下取整,也就是说明,只有当我们的过滤器完全在图像上能够覆盖时才对它进行计算,这是一个惯例。

实际上上述所述的操作在严格数学角度来说不是卷积的定义,卷积的定义上我们计算的时候在移动步长之前也就是对应元素相乘之前是需要对卷积核或者说我们的过滤器进行镜像操作的,经过镜像操作后再把对应元素进行相乘这才是严格意义上的卷积操作,在数学角度上来说这个操作不算严格的卷积操作应该是属于互相关操作,但是在深度学习领域中,大家按照惯例都省略了反转操作,也把这个操作叫做卷积操作

我们知道彩色图像有RGB三个通道,因此对于输入来说是一个三维的输入,那么对三维输入的图像如何进行卷积操作呢?

例子,如上图我们输入图像假设为6×6×3,3代表有RGB三个通道channel,或者可以叫depth深度,过滤器的选择为3×3×3,其中需要规定的是,顾虑器的channel必须与输入图像的channel相同,长宽没有限制,那么计算过程是,我们将过滤器的立体覆盖在输入,这样对应的27个数对应相乘后相加得到一个数,对应到我们的输出,因此这样的方式进行卷积后我们得出的输出层为4×4×1。如果我们有多个过滤器,比如我们分别用两个过滤器一个提取垂直特征,一个提取水平特征,那么输出图4×4×2 。也就是代表我们输出的深度或者说通道与过滤器的个数是相等的。

第l层的卷积标记如下:

加入我们的过滤器是3×3×3规格的,如果我们设定10个过滤器,那么需要学习的参数总数为每个过滤器为27个参数然后加上一个偏差bias那么每个过滤器的参数为28个,所以十个过滤器的参数为280个。从这里也就可以看出,不管我们输入的图片大小是多大,我们都只需要计算这些参数,因此参数共享也就很容易理解了。

为了缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们经常会使用池化层。池化层的计算方式与卷积类似,只是我们需要对每一个通道都进行池化操作。

池化的方式一般有两种:Max Pooling和Average Pooling。

上面为Max Pooling,那么计算方法与卷积类似,首先设定超参数比如过滤器的大小与步长,然后覆盖到对应格子上面,用最大值取代其值作为输出的结果,例如上图为过滤器选择2×2,步长选择为2,因此输出就是2×2的维度,每个输出格子都是过滤器对应维度上输入的最大值。如果为平均池化,那么就是选择其间的平均值作为输出的值。

因此从上面的过程我们看到,通过池化操作能够缩小模型,同时能让特征值更加明显,也就提高了提取特征的鲁棒性。

(责任编辑:IT教学网)

更多