spss怎么假设检验,假设检验spss怎么看
如何用SPSS检验?
这张图里的方差分析F检验结果不显著。看显著性检验结果有两种方法。
1、根据F值判断。
SPSS输出的表格中“F”即样本的计算结果。之后考虑显著性检验的临界值α和F统计量的自由度,在F检验表中查找F的临界值(下表是α=0.1的F临界值表,如果α设定为0.05或0.01则应查找对应的F检验表)。最后,将SPSS计算出的F值与F临界值比较,若大于临界值则可以说在α的意义下结果显著,否则不显著。
2、根据Sig.判断。
SPSS输出的Sig.结果即将计算出的F值根据自由度转换为了P-Value,可以直接根据Sig.判断是否显著,若Sig.α则结果显著,否则不显著,这一方法更方便。
在此基础上拓展一下,z检验、t检验、Chi-Square检验(卡方检验)等判断显著或进行假设检验的方式都是类似的,或者根据对应的检验表,或者根据P-Value。如果根据检验表判断,可分为三步:
第一步,计算统计量的观测值,例如此处的F值,这一步SPSS会直接输出;
第二步,查表,根据自由度和α找到临界值;
第三步,将SPSS输出的统计量观测值与查表所得临界值进行对比,得出结果。
相较之下,根据P-Value来判断则非常简单,SPSS已经根据样本计算并输出了P-Value,只需将P-Value和α对比即可。
此外在一些情况下,SPSS也会自动以星号(*)的数量对是否显著进行标记,例如做相关系数分析时,在0.01级别相关性显著会标注出“**”,在0.05级别相关性显著标注“*”等等。
怎么用SPSS进行t检验
首先准备数据集,本经验使用的数据集为:
1、首先我们打开spss软件,使用SPSS进行两样本T检验。
2、然后我们选择界面上菜单栏分析选项,再点击均值比较选项,再点击两样本T检验选项。
3、选择英语成绩为校验变量,选择性别为分组变量,完成后继续、确定。
4、之后会生成检验结果。
5、首先可查看两个样本的均值,大致看下是否存在明显差异。
6、然后查看第二个表格的方差检验结果,由图可见sig=10.05,直接看第一行数据即可,若此处sig0.05,则就需要看第二行数据。
7、从第一行数据的Sig=0.7160.05可以得出,男、女两个样本的英语成绩没有明显差异。
SPSS中的均值比较—假设检验
前一段时间给大家整体的分享了关于如何使用SPSS来进行描述性统计分析,当时一共是分了三节内容,不知道大家有没有在空闲的时间好好的练习掌握一下。
在给大家分享完关于描述性统计分析的章节以后,我们接下来会用一段时间来给大家分享一下关于如何用SPSS来进行均值比较。关于均值比较在SPSS中是一个比较常见的分析方法,在这里面最常见的方法就是T检验,分别有单样本T检验、独立样本T检验和配对样本T检验。在学习这些检验方法之前,我们首选需要了解假设检验这个概念,因为不仅仅是在均值比较中,在后面的其他分析中我们也是随时会用到假设检验的思想。
假设检验的理论及原理
假设某个企业生产一种电子元件,在进行抽检的时候,企业的质检员说该企业的产品故障率只有千分之一。但是我们在检验的时候发现,从1000个电子元件中随机拿出来了5个,调试以后发现其中有2个发生了故障。这说明什么呢?
其实,如果企业的质检员说的确实是正确的,那照理来说1000个电子原件中应该只有1个会发生故障,这个我们称之为原假设。在这个情况下,我们是不可能出现检验到2个甚至2个以上的电子原件会发生故障,也就是说这种情况发生的概率应该是0。在统计学中,概率极小的事件我们称之为小概率事件。所以说,我们从1000个电子元件中随机拿出来5个进行检验,然后其中有2个发生了故障,也就是说小概率事件发生了。所以这个时候我们的结论是质检员说的话是不正确的,检验的结果没有支持他的判断。
但是如果我们换一种情况,在我们检验这1000个电子元件之前,质检员跟我们说这批电子元件的故障率是1%,我们依然从随机选择的5个电子元件中发现有2个是出现故障了,那这个时候又说明了什么呢?其实这个时候就应该有两个结论:
①:这批商品的故障率远高于1%,质量不可靠;
②:这批商品的故障率确实是1%,只是我们碰巧拿到了有故障的元件而已。
这个时候我们就应该来进行计算,按1%的故障率来说,1000个元件就应该有10个元件是会出现故障的,我们在5个里面发现2个产生了故障,这个情况的概率应该是0.088%(大家可以自己计算一下)。这样一对比,我们就会发现其实这是一个小概率事件而已。
在我们的原假设成立的条件下,如果我们分析计算出来的对应事件概率比较大,那就不能拒绝原假设。如果结果相反,那就说明小概率事件发生了。正常来说,小概率事件在一次实验中是几乎不可能会发生的,但是正常不可能发生的事件确实发生了。那么我们只能说我们的结果不能够支持我们的假设,也就是说质检员1%故障率的说法也是错误的。
上面的例子其实就是我们假设检验的原理:反证法以及小概率原理。反证法的意思就是说,我们在检验之前,先假定原假设是正确的,然后我们根据这个来得到我们的分析结论,如果我们得到的分析结论与原假设中的结论是矛盾的(根据小概率原理),我们就可以说原假设其实是不能成立的,或者一般在分析中我们叫拒绝原假设。虽然我们在做假设检验的时候依据是“小概率事件在一次实验中是几乎不可能会发生的”这个原理,但是小概率时间并不代表没有概率,也就是说它依旧是可能发生的,只是发生的概率很小而已。所以我们在做假设检验的时候会遇到两类问题:
1.原假设是正确的,但是我们根据结果错误的拒绝了原假设,在这个时候这个事件出现的概率也就是我们出现问题的概率。在前面的例子中,如果第二次检验电子元件的合格率确实是1%,但是我们认为这批元件的合格率大于1%,那我们就出现了第一种问题,同时出现这个问题的概率是0.088%。
2.原假设是错误的,但是我们根据结果并没有拒绝原假设,那这个事件发生的概率也就是这类问题出现的概率。
当我们在进行假设检验时,我们无法避免出现这两个问题,或者说降低出现这两类问题的概率。因为如果我们降低了其中一类问题的概率,那另外一类问题的概率就会随之增加。在一开始的举例中,企业是希望我们不要把无故障的元件误判为有故障,也就是说要降低企业的风险。其实在我们实际分析中,我们在第一类问题上面会受到更多的重视,我们会想把这个情况控制在一定的水平。而这个水平我们就将它称为显著性水平,在分析中用α表示。一般我们以0.05或者0.01等数字来表示它(根据实际情况来进行选择)。
正常的数据分析中,假设检验一般是先针对总体样本的均值、比例或者分布来做出假设,也就是我们说的原假设。然后我们会计算在该假设成立的前提下出现这种情况的概率,我们将它叫做P值。如果在实验的过程中小概率时间发生了,也就是说Pα,那就说明结果不支持原假设,我们应该拒绝原假设。在使用SPSS的时候,将这种概率称为显著性的值。反之如果Pα,那我们就接受原假设。在这个里面的α是我们用来把控第一类问题出现的概率,也就是出现这一类问题的概率最大为α。
最后我们来整理一下假设检验的分析步骤:
1.确定分析对应的原假设和与之对应的备用假设。
2.选择我们用来进行假设检验的对应统计量。
3.对选择出来的统计量进行计算并检验,得到P值。
4.确定显著性水平α。如果pα,拒绝原假设。反之,接受原假设。
在我们的实际分析中,许多时候我们进行假设检验都是用来比较两个总体的均值。并且均值的比较在许多研究中都特别常见,应用也特别广泛。今天我们先整理了解假设检验的理论和原理,可能看起来会有一点绕,大家一定要多思考,这样的话我们对接下来的均值分析以及T检验的分析大家在理解的时候就不会有太大的问题了。
欢迎大家进行补充,大家可以在我们的QQ交流群(514581193)或者微信群中(关注小白数据营公众号后台留言进入)参与讨论和交流。
spss如何进行显著水平为0.05的假设实验
spss这样进行显著水平为0.05的假设实验:写清楚实验目的,实验原理,实验内容,实验结果。标记显著性相关的作用是在显著性水平为0.05和为0.01时以星号进行标记,当显著性水平为0.05时标记一个星号,为0.01时标记两个星号。
假设检验的步骤是
假设检验分为5个步骤:
1、根据研究问题的要求提出假设,以平均数差异检验为例,可以提出3种类型的假设。
2、选择合适的检验统计量。从样本情况推断总体情况需要根据条件,如抽样的方法、样本容量大小、总体分布是否正态,方差是否已知等,来选择适当的统计量。
3、根据需要选择显著性水平。
4、计算出检验统计量。运用统计学知识和工具SPSS,计算出检验统计量的数值。
5、根据检验统计量做出统计决策。根据显著性水平和统计量的分布,通过相关统计表找出临界值。
常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。