如何去关注电子商务网站分析(5)

http://www.itjxue.com  2015-07-29 21:56  来源:未知  点击次数: 

potential

2. 识别潜在的影响点和说服点

潜在的影响点和说服点是与预置的影响点和说服点相对应的,即没有被发现却能够对转化施加影响的页面元素。识别潜在点有助于我们提升转化机会。

如何做?

过去我们通过一些传统的线下方法,例如调研,代表性的用户小组(panel)研究,用户可用性测试(usability test)等方式来评估潜在影响访问者的领域,而网站分析则可以从另一个角度来研究,但请注意它和传统方法之间是不能被互相取代的。

识别潜在点的方法仍然要用到热图和访问者转化层次方法。

(1)热图。热图用来发现访问者在页面中的“奇特关注点”,即我们没有预先料到但访问者会感兴趣的地方。并不是每个页面都有奇特关注点,但如果被你发现这样的点,会引发很有意义的思考——用户为什么对它感兴趣,并可能发现一些有趣的结论。

(2)查看访问者转化层次。对“奇特关注点”的转化进行研究,如果转化率高,那恭喜你,你发现了一个值得在页面中放大的元素;如果转化率低,不用沮丧,它也许是个“负面转化影响点”,你应该研究它对转化施加了何种影响。另外,查看访问者转化层次也应该涉及部分高转化元素,尽管它们的点击密度可能很低。“低点击密度+高转化率”同样说明了潜在的机会。

这个领域我就不多说了,大家自己花点儿业余时间做做实验,肯定能发现一些此前从未关注过的东西——这是一块有开发价值的处女地。

3. 购物车和支付环节仍然是重中之重

用户把商品添加到购物车了!恭喜你!离成功只有一步之遥了。不过,行百里者半九十,你需要让用户最终把钱付给你!

购物车这一块最值得关注的就是放弃率(Abandonment Rate),已经走进购物车最后放弃了,真的是煮熟的鸭子飞了,绝对令人沮丧,因此我们要尽量减少这个比例。具体操作的角度上看,衡量这个量很容易,改进起来挺不容易,具体内容不再赘述,请大家看我的这个帖子:电子商务(B2C)网站的Abandonment Rate

而支付的Abonnement Rate也是大家关心的,网站分析在这个支付领域仍然是把它作为一个更细分的转化来研究,而且是单线路转化,所以方法上实际上非常简单,做一个整体的转化漏斗(conversion funnel)和按不同支付方式细分的漏斗即可,主要在于发现转化中的泄漏点(leakage point),并赶紧弥补。

4. 其他关于转化的老生常谈

除了前面的三点,网站分析中涉及到转化的内容就有很多老生常谈的内容了,但越是这样的内容,越难以做到极致。我们不妨快速遍历一遍。

(1)bounce rate。嗯……再熟悉不过了,但很重要。为了降低bounce rate,我们始终强调营销广告内容和landing page的一致性(见该文的误区二),现在在国外已经开始把这个领域做到极致(国内其实也开始了):根据访问者点击广告的具体内容和创意,自动显示给访问者对应的landing page,即不同的广告有不同的landing page。同样,关键词广告也已经开始这么做——landing page上的关键文案(copywriter)和广告文案一致,而且技术实现并没有问题。影响bounce rate还有其他的原因,请参见:以速度为度量思考网站效果——Gomez案例

(2)网站结构的合理性。请参见:影响网站转化率的10大误区(下)的误区7和误区8。

(3)页面元素的合理性。请参见:影响网站转化率的10大误区(上)的误区5和影响网站转化率的10大误区(下)的误区6。

关于网站上的影响、说服和转化,历来都是实践出真知,限于篇幅我无法说太多,所以请大家补充是最好的办法,欢迎朋友们畅所欲言。对了,忠言逆耳利于行,我诚挚欢迎任何意见和指正!

访问者与网站的互动参与

很多时候我们把关注的重心放在转化上,但访问者在网站上进行的其他互动行为一样是值得研究的。关注访问者在网站上的其他互动行为至少能够帮助发现他们的潜在兴趣、忠诚度、行为模式等;也能够帮助进行商品的分析。interaction

访问者互动行为研究包括:

(1)内部搜索分析;这个太重要了,在发现用户潜在兴趣方面还有比这个更好的吗?内部搜索能帮我们解决一个很重要的问题——我们还有哪些用户感兴趣的商品没有涵盖进来,也许这些商品时我们新的利润增长点。

(2)新访问者所占的比例、数量趋势和来源;

(3)旧访问者的访问数量趋势、比例和来源;

(4)访问频次(frequency)和访问间隔时间(recency);

(5)访问路径模式(pattern);这个非常有用,在研究不同类别用户的访问路径时,可以推断用户习惯并据此优化网站结构或页面。路径研究是目前网站分析很薄弱的一块,需要比较强大的网站分析工具,如Omniture SiteCatalyst。由于访问者的网站浏览方式并不是离散的,而是分为几种浏览模式,如促销型、关键词搜索型、树状分类搜索型、浏览型。对不同浏览模式的细分分析可以把混沌的个体浏览行为归类,并按照类别进行网站优化。

商品研究包括:

(1)关注和购买模型;不多说了,请参见:网站分析意义重大——答点石大会朋友提问(上)

(2)询价和购买模型;访问者来询价,还是来购买,在具体行为上是有区别的。我们需要建立模型来区分两种行为,如果一个产品询价行为模式多,而购买行为模式少,那么应该关注这个产品与竞争对手同样产品价格的对比。我们一般用页面停留时间exit rate以及访问深度来综合判断商品访问模式是否偏向于询价,还是偏向于购买。这个研究目前很少进行,因为难度较大,但很有潜力也有意义。

(3)内部搜索分析,同上,不说了。

其他重要的关联因素:

电子商务的网站分析内容还包括很多内容,下面我会简述其中最重要的哪些,请记住每一个领域都是一门非常专业的科学。

狭义的网站分析领域:

  • 地域细分的销售额、访问者和商品关注情况;
  • 客户端情况;例如操作系统,浏览器软件,带宽,访问网站的速度等等;

广义的网站分析领域:

  • 网站分析测试:A/B测试和多变量测试。这些测试也同样适用于对于digital marketing效果的测试,如EDM也完全可以利用A/B测试;
  • 用户可用性测试——Usability Test;
  • 调研;
  • 用户人群(或人类学,demogra)属性研究;demographic
  • 站内IWOM分析;
  • 站外IWOM分析,请参考这个帖子:Sidney的IWOM监测与分析:理解和实践

好了,该结尾了。最后我们看看我们在上篇中提出的那些业务需求都解决(或者部分解决)了哪些:

1. 市场推广方式是否有效,以及能否进一步提效;√ 网站分析能够全面衡量效果,并据此提效

2. 访问网站的用户是否是目标用户,哪种渠道获取的用户更有价值(跟第一个需求有交集也有不同);√网站分析能够衡量是否目标用户以及哪种渠道获取的用户更有价值,但用户本身的人群属性需要额外的demogra研究。

3. 用户对网站的感觉是好还是不好,除了商品本身之外的哪些因素影响用户的感觉;√网站分析能够了解用户体验的优劣,并可以通过优化建议和测试提升用户体验。结合UE设计,能发挥更大威力。

4. 除了撒谎外,什么样的商业手段能够帮助说服客户购买;√网站分析能够发现页面各元素和转化的联系/潜在联系,并可以据此提效。

5. 从什么地方能够进一步节约成本;x没有标准化解决方案,但不排除具体情况下能够起到作用。

6. 新的市场机会在哪里,哪些未上架的商品能够带来新的收入增长。√网站分析能够通过用户搜索和用户行为部分解决。

看来大部分业务需求都可以和网站分析联系起来,并通过网站分析增效,是不是很令人鼓舞?

电子商务本身的网站分析需求是很清晰的,而且也有很成熟的方法论,这个领域大有可为。还有部分没有涵盖的内容请朋友们补充,恳请朋友们提出不同的意见,以及任何的建议!谢谢!

作者:宋星 原文地址:http://www.chinawebanalytics.cn/?p=1899

(责任编辑:IT教学网)

更多